File: cpArbiter.c

package info (click to toggle)
libtuxcap 1.4.0.dfsg2-2.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,176 kB
  • sloc: cpp: 43,203; ansic: 3,095; python: 774; objc: 242; makefile: 100; xml: 87
file content (246 lines) | stat: -rw-r--r-- 6,517 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* Copyright (c) 2007 Scott Lembcke
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
 
#include <stdlib.h>
#include <math.h>

#include "chipmunk.h"

cpFloat cp_bias_coef = 0.1f;
cpFloat cp_collision_slop = 0.1f;

cpContact*
cpContactInit(cpContact *con, cpVect p, cpVect n, cpFloat dist, unsigned int hash)
{
	con->p = p;
	con->n = n;
	con->dist = dist;
	
	con->jnAcc = 0.0f;
	con->jtAcc = 0.0f;
	con->jBias = 0.0f;
	
	con->hash = hash;
		
	return con;
}

cpVect
cpContactsSumImpulses(cpContact *contacts, int numContacts)
{
	cpVect sum = cpvzero;
	
	for(int i=0; i<numContacts; i++){
		cpContact *con = &contacts[i];
		cpVect j = cpvmult(con->n, con->jnAcc);
		sum = cpvadd(sum, j);
	}
		
	return sum;
}

cpVect
cpContactsSumImpulsesWithFriction(cpContact *contacts, int numContacts)
{
	cpVect sum = cpvzero;
	
	for(int i=0; i<numContacts; i++){
		cpContact *con = &contacts[i];
		cpVect t = cpvperp(con->n);
		cpVect j = cpvadd(cpvmult(con->n, con->jnAcc), cpvmult(t, con->jtAcc));
		sum = cpvadd(sum, j);
	}
		
	return sum;
}

cpArbiter*
cpArbiterAlloc(void)
{
	return (cpArbiter *)calloc(1, sizeof(cpArbiter));
}

cpArbiter*
cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b, int stamp)
{
	arb->numContacts = 0;
	arb->contacts = NULL;
	
	arb->a = a;
	arb->b = b;
	
	arb->stamp = stamp;
		
	return arb;
}

cpArbiter*
cpArbiterNew(cpShape *a, cpShape *b, int stamp)
{
	return cpArbiterInit(cpArbiterAlloc(), a, b, stamp);
}

void
cpArbiterDestroy(cpArbiter *arb)
{
	free(arb->contacts);
}

void
cpArbiterFree(cpArbiter *arb)
{
	if(arb) cpArbiterDestroy(arb);
	free(arb);
}

void
cpArbiterInject(cpArbiter *arb, cpContact *contacts, int numContacts)
{
	// Iterate over the possible pairs to look for hash value matches.
	for(int i=0; i<arb->numContacts; i++){
		cpContact *old = &arb->contacts[i];
		
		for(int j=0; j<numContacts; j++){
			cpContact *new_contact = &contacts[j];
			
			// This could trigger false possitives.
			if(new_contact->hash == old->hash){
				// Copy the persistant contact information.
				new_contact->jnAcc = old->jnAcc;
				new_contact->jtAcc = old->jtAcc;
			}
		}
	}

	free(arb->contacts);
	
	arb->contacts = contacts;
	arb->numContacts = numContacts;
}

void
cpArbiterPreStep(cpArbiter *arb, cpFloat dt_inv)
{
	cpShape *shapea = arb->a;
	cpShape *shapeb = arb->b;
		
	arb->e = shapea->e * shapeb->e;
	arb->u = shapea->u * shapeb->u;
	arb->target_v = cpvsub(shapeb->surface_v, shapea->surface_v);

	cpBody *a = shapea->body;
	cpBody *b = shapeb->body;
	
	for(int i=0; i<arb->numContacts; i++){
		cpContact *con = &arb->contacts[i];
		
		// Calculate the offsets.
		con->r1 = cpvsub(con->p, a->p);
		con->r2 = cpvsub(con->p, b->p);
		
		// Calculate the mass normal.
		cpFloat mass_sum = a->m_inv + b->m_inv;
		
		cpFloat r1cn = cpvcross(con->r1, con->n);
		cpFloat r2cn = cpvcross(con->r2, con->n);
		cpFloat kn = mass_sum + a->i_inv*r1cn*r1cn + b->i_inv*r2cn*r2cn;
		con->nMass = 1.0f/kn;
		
		// Calculate the mass tangent.
		cpVect t = cpvperp(con->n);
		cpFloat r1ct = cpvcross(con->r1, t);
		cpFloat r2ct = cpvcross(con->r2, t);
		cpFloat kt = mass_sum + a->i_inv*r1ct*r1ct + b->i_inv*r2ct*r2ct;
		con->tMass = 1.0f/kt;
				
		// Calculate the target bias velocity.
		con->bias = -cp_bias_coef*dt_inv*cpfmin(0.0f, con->dist + cp_collision_slop);
		con->jBias = 0.0f;
		
		// Calculate the target bounce velocity.
		cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(con->r1), a->w));
		cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(con->r2), b->w));
		con->bounce = cpvdot(con->n, cpvsub(v2, v1))*arb->e;
		
		// Apply the previous accumulated impulse.
		cpVect j = cpvadd(cpvmult(con->n, con->jnAcc), cpvmult(t, con->jtAcc));
		cpBodyApplyImpulse(a, cpvneg(j), con->r1);
		cpBodyApplyImpulse(b, j, con->r2);
	}
}

void
cpArbiterApplyImpulse(cpArbiter *arb)
{
	cpBody *a = arb->a->body;
	cpBody *b = arb->b->body;

	for(int i=0; i<arb->numContacts; i++){
		cpContact *con = &arb->contacts[i];
		cpVect n = con->n;
		cpVect r1 = con->r1;
		cpVect r2 = con->r2;
		
		// Calculate the relative bias velocities.
		cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
		cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
		cpFloat vbn = cpvdot(cpvsub(vb2, vb1), n);
		
		// Calculate and clamp the bias impulse.
		cpFloat jbn = (con->bias - vbn)*con->nMass;
		cpFloat jbnOld = con->jBias;
		con->jBias = cpfmax(jbnOld + jbn, 0.0f);
		jbn = con->jBias - jbnOld;
		
		// Apply the bias impulse.
		cpVect jb = cpvmult(n, jbn);
		cpBodyApplyBiasImpulse(a, cpvneg(jb), r1);
		cpBodyApplyBiasImpulse(b, jb, r2);

		// Calculate the relative velocity.
		cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
		cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
		cpVect vr = cpvsub(v2, v1);
		cpFloat vrn = cpvdot(vr, n);
		
		// Calculate and clamp the normal impulse.
		cpFloat jn = -(con->bounce + vrn)*con->nMass;
		cpFloat jnOld = con->jnAcc;
		con->jnAcc = cpfmax(jnOld + jn, 0.0f);
		jn = con->jnAcc - jnOld;
		
		// Calculate the relative tangent velocity.
		cpVect t = cpvperp(n);
		cpFloat vrt = cpvdot(cpvadd(vr, arb->target_v), t);
		
		// Calculate and clamp the friction impulse.
		cpFloat jtMax = arb->u*con->jnAcc;
		cpFloat jt = -vrt*con->tMass;
		cpFloat jtOld = con->jtAcc;
		con->jtAcc = cpfmin(cpfmax(jtOld + jt, -jtMax), jtMax);
		jt = con->jtAcc - jtOld;
		
		// Apply the final impulse.
		cpVect j = cpvadd(cpvmult(n, jn), cpvmult(t, jt));
		cpBodyApplyImpulse(a, cpvneg(j), r1);
		cpBodyApplyImpulse(b, j, r2);
	}
}