File: cpJoint.c

package info (click to toggle)
libtuxcap 1.4.0.dfsg2-2.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 4,176 kB
  • sloc: cpp: 43,203; ansic: 3,095; python: 774; objc: 242; makefile: 100; xml: 87
file content (534 lines) | stat: -rw-r--r-- 14,329 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* Copyright (c) 2007 Scott Lembcke
* 
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* 
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* 
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#include <stdlib.h>
#include <math.h>

#include "chipmunk.h"

// TODO: Comment me!

cpFloat cp_joint_bias_coef = 0.1f;

void cpJointDestroy(cpJoint *joint){}

void
cpJointFree(cpJoint *joint)
{
	if(joint) cpJointDestroy(joint);
	free(joint);
}

static void
pinJointPreStep(cpJoint *joint, cpFloat dt_inv)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	cpPinJoint *jnt = (cpPinJoint *)joint;
	
	cpFloat mass_sum = a->m_inv + b->m_inv;
	
	jnt->r1 = cpvrotate(jnt->anchr1, a->rot);
	jnt->r2 = cpvrotate(jnt->anchr2, b->rot);
	
	cpVect delta = cpvsub(cpvadd(b->p, jnt->r2), cpvadd(a->p, jnt->r1));
	cpFloat dist = cpvlength(delta);
	jnt->n = cpvmult(delta, 1.0f/(dist ? dist : INFINITY));
	
	// calculate mass normal
	cpFloat r1cn = cpvcross(jnt->r1, jnt->n);
	cpFloat r2cn = cpvcross(jnt->r2, jnt->n);
	cpFloat kn = mass_sum + a->i_inv*r1cn*r1cn + b->i_inv*r2cn*r2cn;
	jnt->nMass = 1.0f/kn;
	
	// calculate bias velocity
	jnt->bias = -cp_joint_bias_coef*dt_inv*(dist - jnt->dist);
	jnt->jBias = 0.0f;
	
	// apply accumulated impulse
	cpVect j = cpvmult(jnt->n, jnt->jnAcc);
	cpBodyApplyImpulse(a, cpvneg(j), jnt->r1);
	cpBodyApplyImpulse(b, j, jnt->r2);
}

static void
pinJointApplyImpulse(cpJoint *joint)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	
	cpPinJoint *jnt = (cpPinJoint *)joint;
	cpVect n = jnt->n;
	cpVect r1 = jnt->r1;
	cpVect r2 = jnt->r2;

	//calculate bias impulse
	cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
	cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
	cpFloat vbn = cpvdot(cpvsub(vb2, vb1), n);
	
	cpFloat jbn = (jnt->bias - vbn)*jnt->nMass;
	jnt->jBias += jbn;
	
	cpVect jb = cpvmult(n, jbn);
	cpBodyApplyBiasImpulse(a, cpvneg(jb), r1);
	cpBodyApplyBiasImpulse(b, jb, r2);
	
	// compute relative velocity
	cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
	cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
	cpFloat vrn = cpvdot(cpvsub(v2, v1), n);
	
	// compute normal impulse
	cpFloat jn = -vrn*jnt->nMass;
	jnt->jnAcc =+ jn;
	
	// apply impulse
	cpVect j = cpvmult(n, jn);
	cpBodyApplyImpulse(a, cpvneg(j), r1);
	cpBodyApplyImpulse(b, j, r2);
}

cpPinJoint *
cpPinJointAlloc(void)
{
	return (cpPinJoint *)malloc(sizeof(cpPinJoint));
}

cpPinJoint *
cpPinJointInit(cpPinJoint *joint, cpBody *a, cpBody *b, cpVect anchr1, cpVect anchr2)
{
	joint->joint.preStep = &pinJointPreStep;
	joint->joint.applyImpulse = &pinJointApplyImpulse;
	
	joint->joint.a = a;
	joint->joint.b = b;

        ((cpJoint*)joint)->type = CP_PIN_JOINT;
	
	joint->anchr1 = anchr1;
	joint->anchr2 = anchr2;
	
	cpVect p1 = cpvadd(a->p, cpvrotate(anchr1, a->rot));
	cpVect p2 = cpvadd(b->p, cpvrotate(anchr2, b->rot));
	joint->dist = cpvlength(cpvsub(p2, p1));

	joint->jnAcc = 0.0;
	
	return joint;
}

cpJoint *
cpPinJointNew(cpBody *a, cpBody *b, cpVect anchr1, cpVect anchr2)
{
	return (cpJoint *)cpPinJointInit(cpPinJointAlloc(), a, b, anchr1, anchr2);
}

static void
SlideJointPreStep(cpJoint *joint, cpFloat dt_inv)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	cpSlideJoint *jnt = (cpSlideJoint *)joint;
	
	cpFloat mass_sum = a->m_inv + b->m_inv;
	
	jnt->r1 = cpvrotate(jnt->anchr1, a->rot);
	jnt->r2 = cpvrotate(jnt->anchr2, b->rot);
	
	cpVect delta = cpvsub(cpvadd(b->p, jnt->r2), cpvadd(a->p, jnt->r1));
	cpFloat dist = cpvlength(delta);
	cpFloat pdist = 0.0;
	if(dist > jnt->max) {
		pdist = dist - jnt->max;
	} else if(dist < jnt->min) {
		pdist = jnt->min - dist;
		dist = -dist;
	}
	jnt->n = cpvmult(delta, 1.0f/(dist ? dist : INFINITY));
	
	// calculate mass normal
	cpFloat r1cn = cpvcross(jnt->r1, jnt->n);
	cpFloat r2cn = cpvcross(jnt->r2, jnt->n);
	cpFloat kn = mass_sum + a->i_inv*r1cn*r1cn + b->i_inv*r2cn*r2cn;
	jnt->nMass = 1.0f/kn;
	
	// calculate bias velocity
	jnt->bias = -cp_joint_bias_coef*dt_inv*(pdist);
	jnt->jBias = 0.0f;
	
	// apply accumulated impulse
	if(!jnt->bias) jnt->jnAcc = 0.0f;
	cpVect j = cpvmult(jnt->n, jnt->jnAcc);
	cpBodyApplyImpulse(a, cpvneg(j), jnt->r1);
	cpBodyApplyImpulse(b, j, jnt->r2);
}

static void
SlideJointApplyImpulse(cpJoint *joint)
{
	cpSlideJoint *jnt = (cpSlideJoint *)joint;
	if(!jnt->bias) return;

	cpBody *a = joint->a;
	cpBody *b = joint->b;
	
	cpVect n = jnt->n;
	cpVect r1 = jnt->r1;
	cpVect r2 = jnt->r2;
	
	//calculate bias impulse
	cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
	cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
	cpFloat vbn = cpvdot(cpvsub(vb2, vb1), n);
	
	cpFloat jbn = (jnt->bias - vbn)*jnt->nMass;
	cpFloat jbnOld = jnt->jBias;
	jnt->jBias = cpfmin(jbnOld + jbn, 0.0f);
	jbn = jnt->jBias - jbnOld;
	
	cpVect jb = cpvmult(n, jbn);
	cpBodyApplyBiasImpulse(a, cpvneg(jb), r1);
	cpBodyApplyBiasImpulse(b, jb, r2);
	
	// compute relative velocity
	cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
	cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
	cpFloat vrn = cpvdot(cpvsub(v2, v1), n);
	
	// compute normal impulse
	cpFloat jn = -vrn*jnt->nMass;
	cpFloat jnOld = jnt->jnAcc;
	jnt->jnAcc = cpfmin(jnOld + jn, 0.0f);
	jn = jnt->jnAcc - jnOld;
	
	// apply impulse
	cpVect j = cpvmult(n, jn);
	cpBodyApplyImpulse(a, cpvneg(j), r1);
	cpBodyApplyImpulse(b, j, r2);
}

cpSlideJoint *
cpSlideJointAlloc(void)
{
	return (cpSlideJoint *)malloc(sizeof(cpSlideJoint));
}

cpSlideJoint *
cpSlideJointInit(cpSlideJoint *joint, cpBody *a, cpBody *b, cpVect anchr1, cpVect anchr2, cpFloat min, cpFloat max)
{
	joint->joint.preStep = &SlideJointPreStep;
	joint->joint.applyImpulse = &SlideJointApplyImpulse;
	
	joint->joint.a = a;
	joint->joint.b = b;

        ((cpJoint*)joint)->type = CP_SLIDE_JOINT;
	
	joint->anchr1 = anchr1;
	joint->anchr2 = anchr2;
	joint->min = min;
	joint->max = max;
	
	joint->jnAcc = 0.0;
	
	return joint;
}

cpJoint *
cpSlideJointNew(cpBody *a, cpBody *b, cpVect anchr1, cpVect anchr2, cpFloat min, cpFloat max)
{
	return (cpJoint *)cpSlideJointInit(cpSlideJointAlloc(), a, b, anchr1, anchr2, min, max);
}




static void
pivotJointPreStep(cpJoint *joint, cpFloat dt_inv)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	cpPivotJoint *jnt = (cpPivotJoint *)joint;
	
	jnt->r1 = cpvrotate(jnt->anchr1, a->rot);
	jnt->r2 = cpvrotate(jnt->anchr2, b->rot);
	
	// calculate mass matrix
	// If I wasn't lazy, this wouldn't be so gross...
	cpFloat k11, k12, k21, k22;
	
	cpFloat m_sum = a->m_inv + b->m_inv;
	k11 = m_sum; k12 = 0.0f;
	k21 = 0.0f;  k22 = m_sum;
	
	cpFloat r1xsq =  jnt->r1.x * jnt->r1.x * a->i_inv;
	cpFloat r1ysq =  jnt->r1.y * jnt->r1.y * a->i_inv;
	cpFloat r1nxy = -jnt->r1.x * jnt->r1.y * a->i_inv;
	k11 += r1ysq; k12 += r1nxy;
	k21 += r1nxy; k22 += r1xsq;
	
	cpFloat r2xsq =  jnt->r2.x * jnt->r2.x * b->i_inv;
	cpFloat r2ysq =  jnt->r2.y * jnt->r2.y * b->i_inv;
	cpFloat r2nxy = -jnt->r2.x * jnt->r2.y * b->i_inv;
	k11 += r2ysq; k12 += r2nxy;
	k21 += r2nxy; k22 += r2xsq;
	
	cpFloat det_inv = 1.0f/(k11*k22 - k12*k21);
	jnt->k1 = cpv( k22*det_inv, -k12*det_inv);
	jnt->k2 = cpv(-k21*det_inv,  k11*det_inv);
	
	
	// calculate bias velocity
	cpVect delta = cpvsub(cpvadd(b->p, jnt->r2), cpvadd(a->p, jnt->r1));
	jnt->bias = cpvmult(delta, -cp_joint_bias_coef*dt_inv);
	jnt->jBias = cpvzero;
	
	// apply accumulated impulse
	cpBodyApplyImpulse(a, cpvneg(jnt->jAcc), jnt->r1);
	cpBodyApplyImpulse(b, jnt->jAcc, jnt->r2);
}

static void
pivotJointApplyImpulse(cpJoint *joint)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	
	cpPivotJoint *jnt = (cpPivotJoint *)joint;
	cpVect r1 = jnt->r1;
	cpVect r2 = jnt->r2;
	cpVect k1 = jnt->k1;
	cpVect k2 = jnt->k2;
	
	//calculate bias impulse
	cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
	cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
	cpVect vbr = cpvsub(jnt->bias, cpvsub(vb2, vb1));
	
	cpVect jb = cpv(cpvdot(vbr, k1), cpvdot(vbr, k2));
	jnt->jBias = cpvadd(jnt->jBias, jb);
	
	cpBodyApplyBiasImpulse(a, cpvneg(jb), r1);
	cpBodyApplyBiasImpulse(b, jb, r2);
	
	// compute relative velocity
	cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
	cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
	cpVect vr = cpvsub(v2, v1);
	
	// compute normal impulse
	cpVect j = cpv(-cpvdot(vr, k1), -cpvdot(vr, k2));
	jnt->jAcc = cpvadd(jnt->jAcc, j);
	
	// apply impulse
	cpBodyApplyImpulse(a, cpvneg(j), r1);
	cpBodyApplyImpulse(b, j, r2);
}

cpPivotJoint *
cpPivotJointAlloc(void)
{
	return (cpPivotJoint *)malloc(sizeof(cpPivotJoint));
}

cpPivotJoint *
cpPivotJointInit(cpPivotJoint *joint, cpBody *a, cpBody *b, cpVect pivot)
{
	joint->joint.preStep = &pivotJointPreStep;
	joint->joint.applyImpulse = &pivotJointApplyImpulse;
	
	joint->joint.a = a;
	joint->joint.b = b;

        ((cpJoint*)joint)->type = CP_PIVOT_JOINT;
	
	joint->anchr1 = cpvunrotate(cpvsub(pivot, a->p), a->rot);
	joint->anchr2 = cpvunrotate(cpvsub(pivot, b->p), b->rot);
	
	joint->jAcc = cpvzero;
	
	return joint;
}

cpJoint *
cpPivotJointNew(cpBody *a, cpBody *b, cpVect pivot)
{
	return (cpJoint *)cpPivotJointInit(cpPivotJointAlloc(), a, b, pivot);
}

static void
grooveJointPreStep(cpJoint *joint, cpFloat dt_inv)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	cpGrooveJoint *jnt = (cpGrooveJoint *)joint;
	
	// calculate endpoints in worldspace
	cpVect ta = cpBodyLocal2World(a, jnt->grv_a);
	cpVect tb = cpBodyLocal2World(a, jnt->grv_b);

	// calculate axis
	cpVect n = cpvrotate(jnt->grv_n, a->rot);
	cpFloat d = cpvdot(ta, n);
	
	jnt->grv_tn = n;
	jnt->r2 = cpvrotate(jnt->anchr2, b->rot);
	
	// calculate tangential distance along the axis of r2
	cpFloat td = cpvcross(cpvadd(b->p, jnt->r2), n);
	// calculate clamping factor and r2
	if(td < cpvcross(ta, n)){
		jnt->clamp = 1.0f;
		jnt->r1 = cpvsub(ta, a->p);
	} else if(td > cpvcross(tb, n)){
		jnt->clamp = -1.0f;
		jnt->r1 = cpvsub(tb, a->p);
	} else {
		jnt->clamp = 0.0f;
		jnt->r1 = cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d));
	}
		
	// calculate mass matrix
	// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
	cpFloat k11, k12, k21, k22;
	cpFloat m_sum = a->m_inv + b->m_inv;
	
	// start with I*m_sum
	k11 = m_sum; k12 = 0.0f;
	k21 = 0.0f;  k22 = m_sum;
	
	// add the influence from r1
	cpFloat r1xsq =  jnt->r1.x * jnt->r1.x * a->i_inv;
	cpFloat r1ysq =  jnt->r1.y * jnt->r1.y * a->i_inv;
	cpFloat r1nxy = -jnt->r1.x * jnt->r1.y * a->i_inv;
	k11 += r1ysq; k12 += r1nxy;
	k21 += r1nxy; k22 += r1xsq;
	
	// add the influnce from r2
	cpFloat r2xsq =  jnt->r2.x * jnt->r2.x * b->i_inv;
	cpFloat r2ysq =  jnt->r2.y * jnt->r2.y * b->i_inv;
	cpFloat r2nxy = -jnt->r2.x * jnt->r2.y * b->i_inv;
	k11 += r2ysq; k12 += r2nxy;
	k21 += r2nxy; k22 += r2xsq;
	
	// invert
	cpFloat det_inv = 1.0f/(k11*k22 - k12*k21);
	jnt->k1 = cpv( k22*det_inv, -k12*det_inv);
	jnt->k2 = cpv(-k21*det_inv,  k11*det_inv);
	
	
	// calculate bias velocity
	cpVect delta = cpvsub(cpvadd(b->p, jnt->r2), cpvadd(a->p, jnt->r1));
	jnt->bias = cpvmult(delta, -cp_joint_bias_coef*dt_inv);
	jnt->jBias = cpvzero;
	
	// apply accumulated impulse
	cpBodyApplyImpulse(a, cpvneg(jnt->jAcc), jnt->r1);
	cpBodyApplyImpulse(b, jnt->jAcc, jnt->r2);
}

static inline cpVect
grooveConstrain(cpGrooveJoint *jnt, cpVect j){
	cpVect n = jnt->grv_tn;
	cpVect jn = cpvmult(n, cpvdot(j, n));

	cpVect t = cpvperp(n);
	cpFloat coef = (jnt->clamp*cpvcross(j, n) > 0.0f) ? 1.0f : 0.0f;
	cpVect jt = cpvmult(t, cpvdot(j, t)*coef);	
	
	return cpvadd(jn, jt);
}

static void
grooveJointApplyImpulse(cpJoint *joint)
{
	cpBody *a = joint->a;
	cpBody *b = joint->b;
	
	cpGrooveJoint *jnt = (cpGrooveJoint *)joint;
	cpVect r1 = jnt->r1;
	cpVect r2 = jnt->r2;
	cpVect k1 = jnt->k1;
	cpVect k2 = jnt->k2;
	
	//calculate bias impulse
	cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
	cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
	cpVect vbr = cpvsub(jnt->bias, cpvsub(vb2, vb1));
	
	cpVect jb = cpv(cpvdot(vbr, k1), cpvdot(vbr, k2));
	cpVect jbOld = jnt->jBias;
	jnt->jBias = grooveConstrain(jnt, cpvadd(jbOld, jb));
	jb = cpvsub(jnt->jBias, jbOld);
	
	cpBodyApplyBiasImpulse(a, cpvneg(jb), r1);
	cpBodyApplyBiasImpulse(b, jb, r2);
	
	// compute relative velocity
	cpVect v1 = cpvadd(a->v, cpvmult(cpvperp(r1), a->w));
	cpVect v2 = cpvadd(b->v, cpvmult(cpvperp(r2), b->w));
	cpVect vr = cpvsub(v2, v1);
	
	// compute impulse
	cpVect j = cpv(-cpvdot(vr, k1), -cpvdot(vr, k2));
	cpVect jOld = jnt->jAcc;
	jnt->jAcc = grooveConstrain(jnt, cpvadd(jOld, j));
	j = cpvsub(jnt->jAcc, jOld);
	
	// apply impulse
	cpBodyApplyImpulse(a, cpvneg(j), r1);
	cpBodyApplyImpulse(b, j, r2);
}

cpGrooveJoint *
cpGrooveJointAlloc(void)
{
	return (cpGrooveJoint *)malloc(sizeof(cpGrooveJoint));
}

cpGrooveJoint *
cpGrooveJointInit(cpGrooveJoint *joint, cpBody *a, cpBody *b, cpVect groove_a, cpVect groove_b, cpVect anchr2)
{
	joint->joint.preStep = &grooveJointPreStep;
	joint->joint.applyImpulse = &grooveJointApplyImpulse;
	
	joint->joint.a = a;
	joint->joint.b = b;

        ((cpJoint*)joint)->type = CP_GROOVE_JOINT;
	
	joint->grv_a = groove_a;
	joint->grv_b = groove_b;
	joint->grv_n = cpvperp(cpvnormalize(cpvsub(groove_b, groove_a)));
	joint->anchr2 = anchr2;
	
	joint->jAcc = cpvzero;
	
	return joint;
}

cpJoint *
cpGrooveJointNew(cpBody *a, cpBody *b, cpVect groove_a, cpVect groove_b, cpVect anchr2)
{
	return (cpJoint *)cpGrooveJointInit(cpGrooveJointAlloc(), a, b, groove_a, groove_b, anchr2);
}