1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
=pod
=encoding utf-8
=head1 NAME
Type::Tiny::Manual::UsingWithMoo3 - alternative use of Type::Tiny with Moo
=head1 MANUAL
=head2 Type Registries
In all the examples so far, we have imported a collection of type constraints
into each class:
package Horse {
use Moo;
use Types::Standard qw( Str ArrayRef HashRef Int Any InstanceOf );
use Types::Common::Numeric qw( PositiveInt );
use Types::Common::String qw( NonEmptyStr );
has name => ( is => 'ro', isa => Str );
has father => ( is => 'ro', isa => InstanceOf["Horse"] );
...;
}
This creates a bunch of subs in the Horse namespace, one for each type.
We've used L<namespace::autoclean> to clean these up later.
But it is also possible to avoid pulling all these into the Horse
namespace. Instead we'll use a type registry:
package Horse {
use Moo;
use Type::Registry qw( t );
t->add_types('-Standard');
t->add_types('-Common::String');
t->add_types('-Common::Numeric');
t->alias_type('InstanceOf["Horse"]' => 'Horsey');
has name => ( is => 'ro', isa => t('Str') );
has father => ( is => 'ro', isa => t('Horsey') );
has mother => ( is => 'ro', isa => t('Horsey') );
has children => ( is => 'ro', isa => t('ArrayRef[Horsey]') );
...;
}
You don't even need to import the C<< t() >> function. Types::Registry
can be used in an entirely object-oriented way.
package Horse {
use Moo;
use Type::Registry;
my $reg = Type::Registry->for_me;
$reg->add_types('-Standard');
$reg->add_types('-Common::String');
$reg->add_types('-Common::Numeric');
$reg->alias_type('InstanceOf["Horse"]' => 'Horsey');
has name => ( is => 'ro', isa => $reg->lookup('Str') );
...;
}
You could create two registries with entirely different definitions for
the same named type.
my $dracula = Aristocrat->new(name => 'Dracula');
package AristocracyTracker {
use Type::Registry;
my $reg1 = Type::Registry->new;
$reg1->add_types('-Common::Numeric');
$reg1->alias_type('PositiveInt' => 'Count');
my $reg2 = Type::Registry->new;
$reg2->add_types('-Standard');
$reg2->alias_type('InstanceOf["Aristocrat"]' => 'Count');
$reg1->lookup("Count")->assert_valid("1");
$reg2->lookup("Count")->assert_valid($dracula);
}
Type::Registry uses C<AUTOLOAD>, so things like this work:
$reg->ArrayRef->of( $reg->Int );
Although you can create as many registries as you like, Type::Registry will
create a default registry for each package.
# Create a new empty registry.
#
my $reg = Type::Registry->new;
# Get the default registry for my package.
# It will be pre-populated with any types we imported using `use`.
#
my $reg = Type::Registry->for_me;
# Get the default registry for some other package.
#
my $reg = Type::Registry->for_class("Horse");
Type registries are a convenient place to store a bunch of types without
polluting your namespace. They are not the same as type libraries though.
L<Types::Standard>, L<Types::Common::String>, and L<Types::Common::Numeric>
are type libraries; packages that export types for others to use. We will
look at how to make one of those later.
For now, here's the best way to think of the difference:
=over
=item * Type registry
Curate a collection of types for me to use here in this class.
This collection is an implementation detail.
=item * Type library
Export a collection of types to be used across multiple classes.
This collection is part of your API.
=back
=head2 Importing Functions
We've seen how, for instance, Types::Standard exports a sub called
C<Int> that returns the B<Int> type object.
use Types::Standard qw( Int );
my $type = Int;
$type->check($value) or die $type->get_message($value);
Type libraries are also capable of exporting other convenience functions.
=head3 C<< is_* >>
This is a shortcut for checking a value meets a type constraint:
use Types::Standard qw( is_Int );
if ( is_Int $value ) {
...;
}
Calling C<< is_Int($value) >> will often be marginally faster than
calling C<< Int->check($value) >> because it avoids a method call.
(Method calls in Perl end up slower than normal function calls.)
Using things like C<is_ArrayRef> in your code might be preferable to
C<< ref($value) eq "ARRAY" >> because it's neater, leads to more
consistent type checking, and might even be faster. (Type::Tiny can
be pretty fast; it is sometimes able to export these functions as
XS subs.)
If checking type constraints like C<is_ArrayRef> or C<is_InstanceOf>,
there's no way to give a parameter. C<< is_ArrayRef[Int]($value) >>
doesn't work, and neither does C<< is_ArrayRef(Int, $value) >> nor
C<< is_ArrayRef($value, Int) >>. For some types like C<is_InstanceOf>,
this makes them fairly useless; without being able to give a class
name, it just acts the same as C<< is_Object >>. See
L</Exporting Parameterized Types> for a solution. Also, check out
L<isa>.
There also exists a generic C<is> function.
use Types::Standard qw( ArrayRef Int );
use Type::Utils qw( is );
if ( is ArrayRef[Int], \@numbers ) {
...;
}
=head3 C<< assert_* >>
While C<< is_Int($value) >> returns a boolean, C<< assert_Int($value) >>
will throw an error if the value does not meet the constraint, and return
the value otherwise. So you can do:
my $sum = assert_Int($x) + assert_Int($y);
And you will get the sum of integers C<< $x >> and C<< $y >>, and an explosion
if either of them is not an integer!
Assert is useful for quick parameter checks if you are avoiding
L<Type::Params> for some strange reason:
sub add_numbers {
my $x = assert_Num(shift);
my $y = assert_Num(shift);
return $x + $y;
}
You can also use a generic C<assert> function.
use Type::Utils qw( assert );
sub add_numbers {
my $x = assert Num, shift;
my $y = assert Num, shift;
return $x + $y;
}
=head3 C<< to_* >>
This is a shortcut for coercion:
my $truthy = to_Bool($value);
It trusts that the coercion has worked okay. You can combine it with an
assertion if you want to make sure.
my $truthy = assert_Bool(to_Bool($value));
=head3 Shortcuts for exporting functions
This is a little verbose:
use Types::Standard qw( Bool is_Bool assert_Bool to_Bool );
Isn't this a little bit nicer?
use Types::Standard qw( +Bool );
The plus sign tells a type library to export not only the type itself,
but all of the convenience functions too.
You can also use:
use Types::Standard -types; # export Int, Bool, etc
use Types::Standard -is; # export is_Int, is_Bool, etc
use Types::Standard -assert; # export assert_Int, assert_Bool, etc
use Types::Standard -to; # export to_Bool, etc
use Types::Standard -all; # just export everything!!!
So if you imagine the functions exported by Types::Standard are like this:
qw(
Str is_Str assert_Str
Num is_Num assert_Num
Int is_Int assert_Int
Bool is_Bool assert_Bool to_Bool
ArrayRef is_ArrayRef assert_ArrayRef
);
# ... and more
Then "+" exports a horizonal group of those, and "-" exports a vertical group.
=head2 Exporting Parameterized Types
It's possible to export parameterizable types like B<ArrayRef>, but
it is also possible to export I<parameterized> types.
use Types::Standard qw( ArrayRef Int );
use Types::Standard (
'+ArrayRef' => { of => Int, -as => 'IntList' },
);
has numbers => (is => 'ro', isa => IntList);
Using C<< is_IntList($value) >> should be significantly faster than
C<< ArrayRef->of(Int)->check($value) >>.
This trick only works for parameterized types that have a single
parameter, like B<ArrayRef>, B<HashRef>, B<InstanceOf>, etc.
(Sorry, C<Dict> and C<Tuple>!)
=head2 Lexical imports
Type::Tiny 2.0 combined with Perl 5.37.2+ allows lexically scoped imports.
So:
my $is_ok = do {
use Types::Standard -lexical, qw( Str ArrayRef );
ArrayRef->of( Str )->check( \@things );
};
# The Str and ArrayRef types aren't defined here.
=head2 Do What I Mean!
use Type::Utils qw( dwim_type );
dwim_type("ArrayRef[Int]")
C<dwim_type> will look up a type constraint from a string and attempt to
guess what you meant.
If it's a type constraint that you seem to have imported with C<use>, then
it should find it. Otherwise, if you're using Moose or Mouse, it'll try
asking those. Or if it's in Types::Standard, it'll look there. And if it
still has no idea, then it will assume dwim_type("Foo") means
dwim_type("InstanceOf['Foo']").
It just does a big old bunch of guessing.
The C<is> function will use C<dwim_type> if you pass it a string as a type.
use Type::Utils qw( is );
if ( is "ArrayRef[Int]", \@numbers ) {
...;
}
=head2 Types::Common
Notice that in a lot of examples we're importing one or two functions
each from a few different modules:
use Types::Common::Numeric qw( PositiveInt );
use Types::Common::String qw( NonEmptyStr );
use Types::Standard qw( ArrayRef Slurpy );
use Type::Params qw( signature );
A module called L<Types::Common> exists which acts as a single place you
can use for importing most of Type::Tiny's commonly used types and functions.
use Types::Common qw(
PositiveInt NonEmptyStr ArrayRef Slurpy
signature
);
Types::Common provides:
=over
=item *
All the types from L<Types::Standard>.
=item *
All the types from L<Types::Common::Numeric> and L<Types::Common::String>.
=item *
All the types from L<Types::TypeTiny>.
=item *
The C<< -sigs >> tag from L<Type::Params>.
=item *
The C<< t() >> function from L<Type::Registry>.
=back
=head1 NEXT STEPS
You now know pretty much everything there is to know about how to use
type libraries.
Here's your next step:
=over
=item * L<Type::Tiny::Manual::Libraries>
Defining your own type libraries, including extending existing
libraries, defining new types, adding coercions, defining
parameterizable types, and the declarative style.
=back
=head1 AUTHOR
Toby Inkster E<lt>tobyink@cpan.orgE<gt>.
=head1 COPYRIGHT AND LICENCE
This software is copyright (c) 2013-2014, 2017-2023 by Toby Inkster.
This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.
=head1 DISCLAIMER OF WARRANTIES
THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
=cut
|