1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
/* Copyright StrongLoop, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "defs.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
/* A connection is modeled as an abstraction on top of two simple state
* machines, one for reading and one for writing. Either state machine
* is, when active, in one of three states: busy, done or stop; the fourth
* and final state, dead, is an end state and only relevant when shutting
* down the connection. A short overview:
*
* busy done stop
* ----------|---------------------------|--------------------|------|
* readable | waiting for incoming data | have incoming data | idle |
* writable | busy writing out data | completed write | idle |
*
* We could remove the done state from the writable state machine. For our
* purposes, it's functionally equivalent to the stop state.
*
* When the connection with upstream has been established, the client_ctx
* moves into a state where incoming data from the client is sent upstream
* and vice versa, incoming data from upstream is sent to the client. In
* other words, we're just piping data back and forth. See conn_cycle()
* for details.
*
* An interesting deviation from libuv's I/O model is that reads are discrete
* rather than continuous events. In layman's terms, when a read operation
* completes, the connection stops reading until further notice.
*
* The rationale for this approach is that we have to wait until the data
* has been sent out again before we can reuse the read buffer.
*
* It also pleasingly unifies with the request model that libuv uses for
* writes and everything else; libuv may switch to a request model for
* reads in the future.
*/
enum conn_state {
c_busy, /* Busy; waiting for incoming data or for a write to complete. */
c_done, /* Done; read incoming data or write finished. */
c_stop, /* Stopped. */
c_dead
};
/* Session states. */
enum sess_state {
s_handshake, /* Wait for client handshake. */
s_handshake_auth, /* Wait for client authentication data. */
s_req_start, /* Start waiting for request data. */
s_req_parse, /* Wait for request data. */
s_req_lookup, /* Wait for upstream hostname DNS lookup to complete. */
s_req_connect, /* Wait for uv_tcp_connect() to complete. */
s_proxy_start, /* Connected. Start piping data. */
s_proxy, /* Connected. Pipe data back and forth. */
s_kill, /* Tear down session. */
s_almost_dead_0, /* Waiting for finalizers to complete. */
s_almost_dead_1, /* Waiting for finalizers to complete. */
s_almost_dead_2, /* Waiting for finalizers to complete. */
s_almost_dead_3, /* Waiting for finalizers to complete. */
s_almost_dead_4, /* Waiting for finalizers to complete. */
s_dead /* Dead. Safe to free now. */
};
static void do_next(client_ctx *cx);
static int do_handshake(client_ctx *cx);
static int do_handshake_auth(client_ctx *cx);
static int do_req_start(client_ctx *cx);
static int do_req_parse(client_ctx *cx);
static int do_req_lookup(client_ctx *cx);
static int do_req_connect_start(client_ctx *cx);
static int do_req_connect(client_ctx *cx);
static int do_proxy_start(client_ctx *cx);
static int do_proxy(client_ctx *cx);
static int do_kill(client_ctx *cx);
static int do_almost_dead(client_ctx *cx);
static int conn_cycle(const char *who, conn *a, conn *b);
static void conn_timer_reset(conn *c);
static void conn_timer_expire(uv_timer_t *handle, int status);
static void conn_getaddrinfo(conn *c, const char *hostname);
static void conn_getaddrinfo_done(uv_getaddrinfo_t *req,
int status,
struct addrinfo *ai);
static int conn_connect(conn *c);
static void conn_connect_done(uv_connect_t *req, int status);
static void conn_read(conn *c);
static void conn_read_done(uv_stream_t *handle,
ssize_t nread,
const uv_buf_t *buf);
static void conn_alloc(uv_handle_t *handle, size_t size, uv_buf_t *buf);
static void conn_write(conn *c, const void *data, unsigned int len);
static void conn_write_done(uv_write_t *req, int status);
static void conn_close(conn *c);
static void conn_close_done(uv_handle_t *handle);
/* |incoming| has been initialized by server.c when this is called. */
void client_finish_init(server_ctx *sx, client_ctx *cx) {
conn *incoming;
conn *outgoing;
cx->sx = sx;
cx->state = s_handshake;
s5_init(&cx->parser);
incoming = &cx->incoming;
incoming->client = cx;
incoming->result = 0;
incoming->rdstate = c_stop;
incoming->wrstate = c_stop;
incoming->idle_timeout = sx->idle_timeout;
CHECK(0 == uv_timer_init(sx->loop, &incoming->timer_handle));
outgoing = &cx->outgoing;
outgoing->client = cx;
outgoing->result = 0;
outgoing->rdstate = c_stop;
outgoing->wrstate = c_stop;
outgoing->idle_timeout = sx->idle_timeout;
CHECK(0 == uv_tcp_init(cx->sx->loop, &outgoing->handle.tcp));
CHECK(0 == uv_timer_init(cx->sx->loop, &outgoing->timer_handle));
/* Wait for the initial packet. */
conn_read(incoming);
}
/* This is the core state machine that drives the client <-> upstream proxy.
* We move through the initial handshake and authentication steps first and
* end up (if all goes well) in the proxy state where we're just proxying
* data between the client and upstream.
*/
static void do_next(client_ctx *cx) {
int new_state;
ASSERT(cx->state != s_dead);
switch (cx->state) {
case s_handshake:
new_state = do_handshake(cx);
break;
case s_handshake_auth:
new_state = do_handshake_auth(cx);
break;
case s_req_start:
new_state = do_req_start(cx);
break;
case s_req_parse:
new_state = do_req_parse(cx);
break;
case s_req_lookup:
new_state = do_req_lookup(cx);
break;
case s_req_connect:
new_state = do_req_connect(cx);
break;
case s_proxy_start:
new_state = do_proxy_start(cx);
break;
case s_proxy:
new_state = do_proxy(cx);
break;
case s_kill:
new_state = do_kill(cx);
break;
case s_almost_dead_0:
case s_almost_dead_1:
case s_almost_dead_2:
case s_almost_dead_3:
case s_almost_dead_4:
new_state = do_almost_dead(cx);
break;
default:
UNREACHABLE();
}
cx->state = new_state;
if (cx->state == s_dead) {
if (DEBUG_CHECKS) {
memset(cx, -1, sizeof(*cx));
}
free(cx);
}
}
static int do_handshake(client_ctx *cx) {
unsigned int methods;
conn *incoming;
s5_ctx *parser;
uint8_t *data;
size_t size;
int err;
parser = &cx->parser;
incoming = &cx->incoming;
ASSERT(incoming->rdstate == c_done);
ASSERT(incoming->wrstate == c_stop);
incoming->rdstate = c_stop;
if (incoming->result < 0) {
pr_err("read error: %s", uv_strerror(incoming->result));
return do_kill(cx);
}
data = (uint8_t *) incoming->t.buf;
size = (size_t) incoming->result;
err = s5_parse(parser, &data, &size);
if (err == s5_ok) {
conn_read(incoming);
return s_handshake; /* Need more data. */
}
if (size != 0) {
/* Could allow a round-trip saving shortcut here if the requested auth
* method is S5_AUTH_NONE (provided unauthenticated traffic is allowed.)
* Requires client support however.
*/
pr_err("junk in handshake");
return do_kill(cx);
}
if (err != s5_auth_select) {
pr_err("handshake error: %s", s5_strerror(err));
return do_kill(cx);
}
methods = s5_auth_methods(parser);
if ((methods & S5_AUTH_NONE) && can_auth_none(cx->sx, cx)) {
s5_select_auth(parser, S5_AUTH_NONE);
conn_write(incoming, "\5\0", 2); /* No auth required. */
return s_req_start;
}
if ((methods & S5_AUTH_PASSWD) && can_auth_passwd(cx->sx, cx)) {
/* TODO(bnoordhuis) Implement username/password auth. */
}
conn_write(incoming, "\5\377", 2); /* No acceptable auth. */
return s_kill;
}
/* TODO(bnoordhuis) Implement username/password auth. */
static int do_handshake_auth(client_ctx *cx) {
UNREACHABLE();
return do_kill(cx);
}
static int do_req_start(client_ctx *cx) {
conn *incoming;
incoming = &cx->incoming;
ASSERT(incoming->rdstate == c_stop);
ASSERT(incoming->wrstate == c_done);
incoming->wrstate = c_stop;
if (incoming->result < 0) {
pr_err("write error: %s", uv_strerror(incoming->result));
return do_kill(cx);
}
conn_read(incoming);
return s_req_parse;
}
static int do_req_parse(client_ctx *cx) {
conn *incoming;
conn *outgoing;
s5_ctx *parser;
uint8_t *data;
size_t size;
int err;
parser = &cx->parser;
incoming = &cx->incoming;
outgoing = &cx->outgoing;
ASSERT(incoming->rdstate == c_done);
ASSERT(incoming->wrstate == c_stop);
ASSERT(outgoing->rdstate == c_stop);
ASSERT(outgoing->wrstate == c_stop);
incoming->rdstate = c_stop;
if (incoming->result < 0) {
pr_err("read error: %s", uv_strerror(incoming->result));
return do_kill(cx);
}
data = (uint8_t *) incoming->t.buf;
size = (size_t) incoming->result;
err = s5_parse(parser, &data, &size);
if (err == s5_ok) {
conn_read(incoming);
return s_req_parse; /* Need more data. */
}
if (size != 0) {
pr_err("junk in request %u", (unsigned) size);
return do_kill(cx);
}
if (err != s5_exec_cmd) {
pr_err("request error: %s", s5_strerror(err));
return do_kill(cx);
}
if (parser->cmd == s5_cmd_tcp_bind) {
/* Not supported but relatively straightforward to implement. */
pr_warn("BIND requests are not supported.");
return do_kill(cx);
}
if (parser->cmd == s5_cmd_udp_assoc) {
/* Not supported. Might be hard to implement because libuv has no
* functionality for detecting the MTU size which the RFC mandates.
*/
pr_warn("UDP ASSOC requests are not supported.");
return do_kill(cx);
}
ASSERT(parser->cmd == s5_cmd_tcp_connect);
if (parser->atyp == s5_atyp_host) {
conn_getaddrinfo(outgoing, (const char *) parser->daddr);
return s_req_lookup;
}
if (parser->atyp == s5_atyp_ipv4) {
memset(&outgoing->t.addr4, 0, sizeof(outgoing->t.addr4));
outgoing->t.addr4.sin_family = AF_INET;
outgoing->t.addr4.sin_port = htons(parser->dport);
memcpy(&outgoing->t.addr4.sin_addr,
parser->daddr,
sizeof(outgoing->t.addr4.sin_addr));
} else if (parser->atyp == s5_atyp_ipv6) {
memset(&outgoing->t.addr6, 0, sizeof(outgoing->t.addr6));
outgoing->t.addr6.sin6_family = AF_INET6;
outgoing->t.addr6.sin6_port = htons(parser->dport);
memcpy(&outgoing->t.addr6.sin6_addr,
parser->daddr,
sizeof(outgoing->t.addr6.sin6_addr));
} else {
UNREACHABLE();
}
return do_req_connect_start(cx);
}
static int do_req_lookup(client_ctx *cx) {
s5_ctx *parser;
conn *incoming;
conn *outgoing;
parser = &cx->parser;
incoming = &cx->incoming;
outgoing = &cx->outgoing;
ASSERT(incoming->rdstate == c_stop);
ASSERT(incoming->wrstate == c_stop);
ASSERT(outgoing->rdstate == c_stop);
ASSERT(outgoing->wrstate == c_stop);
if (outgoing->result < 0) {
/* TODO(bnoordhuis) Escape control characters in parser->daddr. */
pr_err("lookup error for \"%s\": %s",
parser->daddr,
uv_strerror(outgoing->result));
/* Send back a 'Host unreachable' reply. */
conn_write(incoming, "\5\4\0\1\0\0\0\0\0\0", 10);
return s_kill;
}
/* Don't make assumptions about the offset of sin_port/sin6_port. */
switch (outgoing->t.addr.sa_family) {
case AF_INET:
outgoing->t.addr4.sin_port = htons(parser->dport);
break;
case AF_INET6:
outgoing->t.addr6.sin6_port = htons(parser->dport);
break;
default:
UNREACHABLE();
}
return do_req_connect_start(cx);
}
/* Assumes that cx->outgoing.t.sa contains a valid AF_INET/AF_INET6 address. */
static int do_req_connect_start(client_ctx *cx) {
conn *incoming;
conn *outgoing;
int err;
incoming = &cx->incoming;
outgoing = &cx->outgoing;
ASSERT(incoming->rdstate == c_stop);
ASSERT(incoming->wrstate == c_stop);
ASSERT(outgoing->rdstate == c_stop);
ASSERT(outgoing->wrstate == c_stop);
if (!can_access(cx->sx, cx, &outgoing->t.addr)) {
pr_warn("connection not allowed by ruleset");
/* Send a 'Connection not allowed by ruleset' reply. */
conn_write(incoming, "\5\2\0\1\0\0\0\0\0\0", 10);
return s_kill;
}
err = conn_connect(outgoing);
if (err != 0) {
pr_err("connect error: %s\n", uv_strerror(err));
return do_kill(cx);
}
return s_req_connect;
}
static int do_req_connect(client_ctx *cx) {
const struct sockaddr_in6 *in6;
const struct sockaddr_in *in;
char addr_storage[sizeof(*in6)];
conn *incoming;
conn *outgoing;
uint8_t *buf;
int addrlen;
incoming = &cx->incoming;
outgoing = &cx->outgoing;
ASSERT(incoming->rdstate == c_stop);
ASSERT(incoming->wrstate == c_stop);
ASSERT(outgoing->rdstate == c_stop);
ASSERT(outgoing->wrstate == c_stop);
/* Build and send the reply. Not very pretty but gets the job done. */
buf = (uint8_t *) incoming->t.buf;
if (outgoing->result == 0) {
/* The RFC mandates that the SOCKS server must include the local port
* and address in the reply. So that's what we do.
*/
addrlen = sizeof(addr_storage);
CHECK(0 == uv_tcp_getsockname(&outgoing->handle.tcp,
(struct sockaddr *) addr_storage,
&addrlen));
buf[0] = 5; /* Version. */
buf[1] = 0; /* Success. */
buf[2] = 0; /* Reserved. */
if (addrlen == sizeof(*in)) {
buf[3] = 1; /* IPv4. */
in = (const struct sockaddr_in *) &addr_storage;
memcpy(buf + 4, &in->sin_addr, 4);
memcpy(buf + 8, &in->sin_port, 2);
conn_write(incoming, buf, 10);
} else if (addrlen == sizeof(*in6)) {
buf[3] = 4; /* IPv6. */
in6 = (const struct sockaddr_in6 *) &addr_storage;
memcpy(buf + 4, &in6->sin6_addr, 16);
memcpy(buf + 20, &in6->sin6_port, 2);
conn_write(incoming, buf, 22);
} else {
UNREACHABLE();
}
return s_proxy_start;
} else {
pr_err("upstream connection error: %s\n", uv_strerror(outgoing->result));
/* Send a 'Connection refused' reply. */
conn_write(incoming, "\5\5\0\1\0\0\0\0\0\0", 10);
return s_kill;
}
UNREACHABLE();
return s_kill;
}
static int do_proxy_start(client_ctx *cx) {
conn *incoming;
conn *outgoing;
incoming = &cx->incoming;
outgoing = &cx->outgoing;
ASSERT(incoming->rdstate == c_stop);
ASSERT(incoming->wrstate == c_done);
ASSERT(outgoing->rdstate == c_stop);
ASSERT(outgoing->wrstate == c_stop);
incoming->wrstate = c_stop;
if (incoming->result < 0) {
pr_err("write error: %s", uv_strerror(incoming->result));
return do_kill(cx);
}
conn_read(incoming);
conn_read(outgoing);
return s_proxy;
}
/* Proxy incoming data back and forth. */
static int do_proxy(client_ctx *cx) {
if (conn_cycle("client", &cx->incoming, &cx->outgoing)) {
return do_kill(cx);
}
if (conn_cycle("upstream", &cx->outgoing, &cx->incoming)) {
return do_kill(cx);
}
return s_proxy;
}
static int do_kill(client_ctx *cx) {
int new_state;
if (cx->state >= s_almost_dead_0) {
return cx->state;
}
/* Try to cancel the request. The callback still runs but if the
* cancellation succeeded, it gets called with status=UV_ECANCELED.
*/
new_state = s_almost_dead_1;
if (cx->state == s_req_lookup) {
new_state = s_almost_dead_0;
uv_cancel(&cx->outgoing.t.req);
}
conn_close(&cx->incoming);
conn_close(&cx->outgoing);
return new_state;
}
static int do_almost_dead(client_ctx *cx) {
ASSERT(cx->state >= s_almost_dead_0);
return cx->state + 1; /* Another finalizer completed. */
}
static int conn_cycle(const char *who, conn *a, conn *b) {
if (a->result < 0) {
if (a->result != UV_EOF) {
pr_err("%s error: %s", who, uv_strerror(a->result));
}
return -1;
}
if (b->result < 0) {
return -1;
}
if (a->wrstate == c_done) {
a->wrstate = c_stop;
}
/* The logic is as follows: read when we don't write and write when we don't
* read. That gives us back-pressure handling for free because if the peer
* sends data faster than we consume it, TCP congestion control kicks in.
*/
if (a->wrstate == c_stop) {
if (b->rdstate == c_stop) {
conn_read(b);
} else if (b->rdstate == c_done) {
conn_write(a, b->t.buf, b->result);
b->rdstate = c_stop; /* Triggers the call to conn_read() above. */
}
}
return 0;
}
static void conn_timer_reset(conn *c) {
CHECK(0 == uv_timer_start(&c->timer_handle,
conn_timer_expire,
c->idle_timeout,
0));
}
static void conn_timer_expire(uv_timer_t *handle, int status) {
conn *c;
CHECK(0 == status);
c = CONTAINER_OF(handle, conn, timer_handle);
c->result = UV_ETIMEDOUT;
do_next(c->client);
}
static void conn_getaddrinfo(conn *c, const char *hostname) {
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
CHECK(0 == uv_getaddrinfo(c->client->sx->loop,
&c->t.addrinfo_req,
conn_getaddrinfo_done,
hostname,
NULL,
&hints));
conn_timer_reset(c);
}
static void conn_getaddrinfo_done(uv_getaddrinfo_t *req,
int status,
struct addrinfo *ai) {
conn *c;
c = CONTAINER_OF(req, conn, t.addrinfo_req);
c->result = status;
if (status == 0) {
/* FIXME(bnoordhuis) Should try all addresses. */
if (ai->ai_family == AF_INET) {
c->t.addr4 = *(const struct sockaddr_in *) ai->ai_addr;
} else if (ai->ai_family == AF_INET6) {
c->t.addr6 = *(const struct sockaddr_in6 *) ai->ai_addr;
} else {
UNREACHABLE();
}
}
uv_freeaddrinfo(ai);
do_next(c->client);
}
/* Assumes that c->t.sa contains a valid AF_INET or AF_INET6 address. */
static int conn_connect(conn *c) {
ASSERT(c->t.addr.sa_family == AF_INET ||
c->t.addr.sa_family == AF_INET6);
conn_timer_reset(c);
return uv_tcp_connect(&c->t.connect_req,
&c->handle.tcp,
&c->t.addr,
conn_connect_done);
}
static void conn_connect_done(uv_connect_t *req, int status) {
conn *c;
if (status == UV_ECANCELED) {
return; /* Handle has been closed. */
}
c = CONTAINER_OF(req, conn, t.connect_req);
c->result = status;
do_next(c->client);
}
static void conn_read(conn *c) {
ASSERT(c->rdstate == c_stop);
CHECK(0 == uv_read_start(&c->handle.stream, conn_alloc, conn_read_done));
c->rdstate = c_busy;
conn_timer_reset(c);
}
static void conn_read_done(uv_stream_t *handle,
ssize_t nread,
const uv_buf_t *buf) {
conn *c;
c = CONTAINER_OF(handle, conn, handle);
ASSERT(c->t.buf == buf->base);
ASSERT(c->rdstate == c_busy);
c->rdstate = c_done;
c->result = nread;
uv_read_stop(&c->handle.stream);
do_next(c->client);
}
static void conn_alloc(uv_handle_t *handle, size_t size, uv_buf_t *buf) {
conn *c;
c = CONTAINER_OF(handle, conn, handle);
ASSERT(c->rdstate == c_busy);
buf->base = c->t.buf;
buf->len = sizeof(c->t.buf);
}
static void conn_write(conn *c, const void *data, unsigned int len) {
uv_buf_t buf;
ASSERT(c->wrstate == c_stop || c->wrstate == c_done);
c->wrstate = c_busy;
/* It's okay to cast away constness here, uv_write() won't modify the
* memory.
*/
buf.base = (char *) data;
buf.len = len;
CHECK(0 == uv_write(&c->write_req,
&c->handle.stream,
&buf,
1,
conn_write_done));
conn_timer_reset(c);
}
static void conn_write_done(uv_write_t *req, int status) {
conn *c;
if (status == UV_ECANCELED) {
return; /* Handle has been closed. */
}
c = CONTAINER_OF(req, conn, write_req);
ASSERT(c->wrstate == c_busy);
c->wrstate = c_done;
c->result = status;
do_next(c->client);
}
static void conn_close(conn *c) {
ASSERT(c->rdstate != c_dead);
ASSERT(c->wrstate != c_dead);
c->rdstate = c_dead;
c->wrstate = c_dead;
c->timer_handle.data = c;
c->handle.handle.data = c;
uv_close(&c->handle.handle, conn_close_done);
uv_close((uv_handle_t *) &c->timer_handle, conn_close_done);
}
static void conn_close_done(uv_handle_t *handle) {
conn *c;
c = handle->data;
do_next(c->client);
}
|