File: codegen-mips.cc

package info (click to toggle)
libv8-3.14 3.14.5.8-11
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 58,996 kB
  • ctags: 70,298
  • sloc: cpp: 694,074; python: 9,631; ansic: 3,263; sh: 885; makefile: 293; lisp: 222
file content (454 lines) | stat: -rw-r--r-- 16,509 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_MIPS)

#include "codegen.h"
#include "macro-assembler.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
  switch (type) {
    case TranscendentalCache::SIN: return &sin;
    case TranscendentalCache::COS: return &cos;
    case TranscendentalCache::TAN: return &tan;
    case TranscendentalCache::LOG: return &log;
    default: UNIMPLEMENTED();
  }
  return NULL;
}


UnaryMathFunction CreateSqrtFunction() {
  return &sqrt;
}

// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  ASSERT(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  ASSERT(masm->has_frame());
  masm->set_has_frame(false);
}

// -------------------------------------------------------------------------
// Code generators

void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
    MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : target map, scratch for subsequent call
  //  -- t0    : scratch (elements)
  // -----------------------------------
  // Set transitioned map.
  __ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ RecordWriteField(a2,
                      HeapObject::kMapOffset,
                      a3,
                      t5,
                      kRAHasNotBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void ElementsTransitionGenerator::GenerateSmiToDouble(
    MacroAssembler* masm, Label* fail) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : target map, scratch for subsequent call
  //  -- t0    : scratch (elements)
  // -----------------------------------
  Label loop, entry, convert_hole, gc_required, only_change_map, done;
  bool fpu_supported = CpuFeatures::IsSupported(FPU);

  Register scratch = t6;

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ lw(t0, FieldMemOperand(a2, JSObject::kElementsOffset));
  __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
  __ Branch(&only_change_map, eq, at, Operand(t0));

  __ push(ra);
  __ lw(t1, FieldMemOperand(t0, FixedArray::kLengthOffset));
  // t0: source FixedArray
  // t1: number of elements (smi-tagged)

  // Allocate new FixedDoubleArray.
  __ sll(scratch, t1, 2);
  __ Addu(scratch, scratch, FixedDoubleArray::kHeaderSize);
  __ AllocateInNewSpace(scratch, t2, t3, t5, &gc_required, NO_ALLOCATION_FLAGS);
  // t2: destination FixedDoubleArray, not tagged as heap object
  // Set destination FixedDoubleArray's length and map.
  __ LoadRoot(t5, Heap::kFixedDoubleArrayMapRootIndex);
  __ sw(t1, MemOperand(t2, FixedDoubleArray::kLengthOffset));
  __ sw(t5, MemOperand(t2, HeapObject::kMapOffset));
  // Update receiver's map.

  __ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ RecordWriteField(a2,
                      HeapObject::kMapOffset,
                      a3,
                      t5,
                      kRAHasBeenSaved,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  // Replace receiver's backing store with newly created FixedDoubleArray.
  __ Addu(a3, t2, Operand(kHeapObjectTag));
  __ sw(a3, FieldMemOperand(a2, JSObject::kElementsOffset));
  __ RecordWriteField(a2,
                      JSObject::kElementsOffset,
                      a3,
                      t5,
                      kRAHasBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);


  // Prepare for conversion loop.
  __ Addu(a3, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ Addu(t3, t2, Operand(FixedDoubleArray::kHeaderSize));
  __ sll(t2, t1, 2);
  __ Addu(t2, t2, t3);
  __ li(t0, Operand(kHoleNanLower32));
  __ li(t1, Operand(kHoleNanUpper32));
  // t0: kHoleNanLower32
  // t1: kHoleNanUpper32
  // t2: end of destination FixedDoubleArray, not tagged
  // t3: begin of FixedDoubleArray element fields, not tagged

  if (!fpu_supported) __ Push(a1, a0);

  __ Branch(&entry);

  __ bind(&only_change_map);
  __ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ RecordWriteField(a2,
                      HeapObject::kMapOffset,
                      a3,
                      t5,
                      kRAHasBeenSaved,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ Branch(&done);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
  __ pop(ra);
  __ Branch(fail);

  // Convert and copy elements.
  __ bind(&loop);
  __ lw(t5, MemOperand(a3));
  __ Addu(a3, a3, kIntSize);
  // t5: current element
  __ UntagAndJumpIfNotSmi(t5, t5, &convert_hole);

  // Normal smi, convert to double and store.
  if (fpu_supported) {
    CpuFeatures::Scope scope(FPU);
    __ mtc1(t5, f0);
    __ cvt_d_w(f0, f0);
    __ sdc1(f0, MemOperand(t3));
    __ Addu(t3, t3, kDoubleSize);
  } else {
    FloatingPointHelper::ConvertIntToDouble(masm,
                                            t5,
                                            FloatingPointHelper::kCoreRegisters,
                                            f0,
                                            a0,
                                            a1,
                                            t7,
                                            f0);
    __ sw(a0, MemOperand(t3, Register::kMantissaOffset));  // mantissa
    __ sw(a1, MemOperand(t3, Register::kExponentOffset));  // exponent
    __ Addu(t3, t3, kDoubleSize);
  }
  __ Branch(&entry);

  // Hole found, store the-hole NaN.
  __ bind(&convert_hole);
  if (FLAG_debug_code) {
    // Restore a "smi-untagged" heap object.
    __ SmiTag(t5);
    __ Or(t5, t5, Operand(1));
    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
    __ Assert(eq, "object found in smi-only array", at, Operand(t5));
  }
  __ sw(t0, MemOperand(t3, Register::kMantissaOffset));  // mantissa
  __ sw(t1, MemOperand(t3, Register::kExponentOffset));  // exponent
  __ Addu(t3, t3, kDoubleSize);

  __ bind(&entry);
  __ Branch(&loop, lt, t3, Operand(t2));

  if (!fpu_supported) __ Pop(a1, a0);
  __ pop(ra);
  __ bind(&done);
}


void ElementsTransitionGenerator::GenerateDoubleToObject(
    MacroAssembler* masm, Label* fail) {
  // ----------- S t a t e -------------
  //  -- a0    : value
  //  -- a1    : key
  //  -- a2    : receiver
  //  -- ra    : return address
  //  -- a3    : target map, scratch for subsequent call
  //  -- t0    : scratch (elements)
  // -----------------------------------
  Label entry, loop, convert_hole, gc_required, only_change_map;

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ lw(t0, FieldMemOperand(a2, JSObject::kElementsOffset));
  __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
  __ Branch(&only_change_map, eq, at, Operand(t0));

  __ MultiPush(a0.bit() | a1.bit() | a2.bit() | a3.bit() | ra.bit());

  __ lw(t1, FieldMemOperand(t0, FixedArray::kLengthOffset));
  // t0: source FixedArray
  // t1: number of elements (smi-tagged)

  // Allocate new FixedArray.
  __ sll(a0, t1, 1);
  __ Addu(a0, a0, FixedDoubleArray::kHeaderSize);
  __ AllocateInNewSpace(a0, t2, t3, t5, &gc_required, NO_ALLOCATION_FLAGS);
  // t2: destination FixedArray, not tagged as heap object
  // Set destination FixedDoubleArray's length and map.
  __ LoadRoot(t5, Heap::kFixedArrayMapRootIndex);
  __ sw(t1, MemOperand(t2, FixedDoubleArray::kLengthOffset));
  __ sw(t5, MemOperand(t2, HeapObject::kMapOffset));

  // Prepare for conversion loop.
  __ Addu(t0, t0, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + Register::kExponentOffset));
  __ Addu(a3, t2, Operand(FixedArray::kHeaderSize));
  __ Addu(t2, t2, Operand(kHeapObjectTag));
  __ sll(t1, t1, 1);
  __ Addu(t1, a3, t1);
  __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
  __ LoadRoot(t5, Heap::kHeapNumberMapRootIndex);
  // Using offsetted addresses.
  // a3: begin of destination FixedArray element fields, not tagged
  // t0: begin of source FixedDoubleArray element fields, not tagged, points to the exponent
  // t1: end of destination FixedArray, not tagged
  // t2: destination FixedArray
  // t3: the-hole pointer
  // t5: heap number map
  __ Branch(&entry);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
  __ MultiPop(a0.bit() | a1.bit() | a2.bit() | a3.bit() | ra.bit());

  __ Branch(fail);

  __ bind(&loop);
  __ lw(a1, MemOperand(t0, 0)); // exponent
  __ Addu(t0, t0, kDoubleSize);
  // a1: current element's upper 32 bit
  // t0: address of next element's upper 32 bit
  __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));

  // Non-hole double, copy value into a heap number.
  __ AllocateHeapNumber(a2, a0, t6, t5, &gc_required);
  // a2: new heap number
  // Load mantissa of current element, t0 point to exponent of next element.
  __ lw(a0, MemOperand(t0, (Register::kMantissaOffset - Register::kExponentOffset - kDoubleSize)));
  __ sw(a0, FieldMemOperand(a2, HeapNumber::kMantissaOffset));
  __ sw(a1, FieldMemOperand(a2, HeapNumber::kExponentOffset));
  __ mov(a0, a3);
  __ sw(a2, MemOperand(a3));
  __ Addu(a3, a3, kIntSize);
  __ RecordWrite(t2,
                 a0,
                 a2,
                 kRAHasBeenSaved,
                 kDontSaveFPRegs,
                 EMIT_REMEMBERED_SET,
                 OMIT_SMI_CHECK);
  __ Branch(&entry);

  // Replace the-hole NaN with the-hole pointer.
  __ bind(&convert_hole);
  __ sw(t3, MemOperand(a3));
  __ Addu(a3, a3, kIntSize);

  __ bind(&entry);
  __ Branch(&loop, lt, a3, Operand(t1));

  __ MultiPop(a2.bit() | a3.bit() | a0.bit() | a1.bit());
  // Replace receiver's backing store with newly created and filled FixedArray.
  __ sw(t2, FieldMemOperand(a2, JSObject::kElementsOffset));
  __ RecordWriteField(a2,
                      JSObject::kElementsOffset,
                      t2,
                      t5,
                      kRAHasBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ pop(ra);

  __ bind(&only_change_map);
  // Update receiver's map.
  __ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
  __ RecordWriteField(a2,
                      HeapObject::kMapOffset,
                      a3,
                      t5,
                      kRAHasNotBeenSaved,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  // Fetch the instance type of the receiver into result register.
  __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ And(at, result, Operand(kIsIndirectStringMask));
  __ Branch(&check_sequential, eq, at, Operand(zero_reg));

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string;
  __ And(at, result, Operand(kSlicedNotConsMask));
  __ Branch(&cons_string, eq, at, Operand(zero_reg));

  // Handle slices.
  Label indirect_string_loaded;
  __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
  __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ sra(at, result, kSmiTagSize);
  __ Addu(index, index, at);
  __ jmp(&indirect_string_loaded);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ LoadRoot(at, Heap::kEmptyStringRootIndex);
  __ Branch(call_runtime, ne, result, Operand(at));
  // Get the first of the two strings and load its instance type.
  __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));

  __ bind(&indirect_string_loaded);
  __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ And(at, result, Operand(kStringRepresentationMask));
  __ Branch(&external_string, ne, at, Operand(zero_reg));

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
  __ Addu(string,
          string,
          SeqTwoByteString::kHeaderSize - kHeapObjectTag);
  __ jmp(&check_encoding);

  // Handle external strings.
  __ bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ And(at, result, Operand(kIsIndirectStringMask));
    __ Assert(eq, "external string expected, but not found",
        at, Operand(zero_reg));
  }
  // Rule out short external strings.
  STATIC_CHECK(kShortExternalStringTag != 0);
  __ And(at, result, Operand(kShortExternalStringMask));
  __ Branch(call_runtime, ne, at, Operand(zero_reg));
  __ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label ascii, done;
  __ bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ And(at, result, Operand(kStringEncodingMask));
  __ Branch(&ascii, ne, at, Operand(zero_reg));
  // Two-byte string.
  __ sll(at, index, 1);
  __ Addu(at, string, at);
  __ lhu(result, MemOperand(at));
  __ jmp(&done);
  __ bind(&ascii);
  // Ascii string.
  __ Addu(at, string, index);
  __ lbu(result, MemOperand(at));
  __ bind(&done);
}

#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_MIPS