File: vcflib.1

package info (click to toggle)
libvcflib 1.0.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 70,520 kB
  • sloc: cpp: 39,837; python: 532; perl: 474; ansic: 317; ruby: 295; sh: 254; lisp: 148; makefile: 123; javascript: 94
file content (722 lines) | stat: -rw-r--r-- 17,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
'\" t
.\" Automatically generated by Pandoc 2.19.2
.\"
.\" Define V font for inline verbatim, using C font in formats
.\" that render this, and otherwise B font.
.ie "\f[CB]x\f[]"x" \{\
. ftr V B
. ftr VI BI
. ftr VB B
. ftr VBI BI
.\}
.el \{\
. ftr V CR
. ftr VI CI
. ftr VB CB
. ftr VBI CBI
.\}
.TH "vcflib" "1" "" "vcflib" "vcflib (index)"
.hy
.SH NAME
.PP
\f[B]vcflib\f[R] index
.SH DESCRIPTION
.PP
vcflib contains tools and libraries for dealing with the Variant Call
Format (VCF) which is a flat-file, tab-delimited textual format intended
to describe reference-indexed variations between individuals.
.PP
VCF provides a common interchange format for the description of
variation in individuals and populations of samples, and has become the
defacto standard reporting format for a wide array of genomic variant
detectors.
.PP
vcflib provides methods to manipulate and interpret sequence variation
as it can be described by VCF.
It is both:
.IP \[bu] 2
an API for parsing and operating on records of genomic variation as it
can be described by the VCF format,
.IP \[bu] 2
and a collection of command-line utilities for executing complex
manipulations on VCF files.
.PP
The API itself provides a quick and extremely permissive method to read
and write VCF files.
Extensions and applications of the library provided in the included
utilities (*.cpp) comprise the vast bulk of the library\[cq]s utility
for most users.
.SS filter
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
filter command
T}@T{
description
T}
_
T{
\f[B]vcffilter\f[R]
T}@T{
VCF filter the specified vcf file using the set of filters
T}
T{
\f[B]vcfuniq\f[R]
T}@T{
List unique genotypes.
Similar to GNU uniq, but aimed at VCF records.
\f[B]vcfuniq\f[R] removes records which have the same position, ref, and
alt as the previous record on a sorted VCF file.
Note that it does not adjust/combine genotypes in the output, but simply
takes the first record.
See also vcfcreatemulti for combining records.
T}
T{
\f[B]vcfuniqalleles\f[R]
T}@T{
List unique alleles For each record, remove any duplicate alternate
alleles that may have resulted from merging separate VCF files.
T}
.TE
.SS metrics
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
metrics command
T}@T{
description
T}
_
T{
\f[B]vcfcheck\f[R]
T}@T{
Validate integrity and identity of the VCF by verifying that the VCF
record\[cq]s REF matches a given reference file.
T}
T{
\f[B]vcfdistance\f[R]
T}@T{
Adds a tag to each variant record which indicates the distance to the
nearest variant.
(defaults to BasesToClosestVariant if no custom tag name is given.
T}
T{
\f[B]vcfentropy\f[R]
T}@T{
Annotate VCF records with the Shannon entropy of flanking sequence.
Anotates the output VCF file with, for each record, EntropyLeft,
EntropyRight, EntropyCenter, which are the entropies of the sequence of
the given window size to the left, right, and center of the record.
Also adds EntropyRef and EntropyAlt for each alt.
T}
T{
\f[B]vcfhetcount\f[R]
T}@T{
Calculate the heterozygosity rate: count the number of alternate alleles
in heterozygous genotypes in all records in the vcf file
T}
T{
\f[B]vcfhethomratio\f[R]
T}@T{
Generates the het/hom ratio for each individual in the file
T}
.TE
.SS phenotype
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
phenotype command
T}@T{
description
T}
_
T{
\f[B]permuteGPAT++\f[R]
T}@T{
\f[B]permuteGPAT++\f[R] is a method for adding empirical p-values to a
GPAT++ score.
T}
.TE
.SS genotype
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
genotype command
T}@T{
description
T}
_
T{
\f[B]abba-baba\f[R]
T}@T{
\f[B]abba-baba\f[R] calculates the tree pattern for four indviduals.
This tool assumes reference is ancestral and ignores non
\f[B]abba-baba\f[R] sites.
The output is a boolian value: 1 = true , 0 = false for abba and baba.
the tree argument should be specified from the most basal taxa to the
most derived.
T}
T{
\f[B]hapLrt\f[R]
T}@T{
HapLRT is a likelihood ratio test for haplotype lengths.
The lengths are modeled with an exponential distribution.
The sign denotes if the target has longer haplotypes (1) or the
background (-1).
T}
T{
\f[B]normalize-iHS\f[R]
T}@T{
normalizes iHS or XP-EHH scores.
T}
.TE
.SS transformation
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
transformation command
T}@T{
description
T}
_
T{
\f[B]dumpContigsFromHeader\f[R]
T}@T{
Dump contigs from header
T}
T{
\f[B]smoother\f[R]
T}@T{
smoothes is a method for window smoothing many of the GPAT++ formats.
T}
T{
\f[B]vcf2dag\f[R]
T}@T{
Modify VCF to be able to build a directed acyclic graph (DAG)
T}
T{
\f[B]vcf2fasta\f[R]
T}@T{
Generates sample_seq:N.fa for each sample, reference sequence, and
chromosomal copy N in [0,1\&...
ploidy].
Each sequence in the fasta file is named using the same pattern used for
the file name, allowing them to be combined.
T}
T{
\f[B]vcf2tsv\f[R]
T}@T{
Converts VCF to per-allelle or per-genotype tab-delimited format, using
null string to replace empty values in the table.
Specifying -g will output one line per sample with genotype information.
When there is more than one alt allele there will be multiple rows, one
for each allele and, the info will match the `A' index
T}
T{
\f[B]vcfaddinfo\f[R]
T}@T{
Adds info fields from the second file which are not present in the first
vcf file.
T}
T{
\f[B]vcfafpath\f[R]
T}@T{
Display genotype paths
T}
T{
\f[B]vcfallelicprimitives\f[R]
T}@T{
WARNING: this tool is considered legacy and is only retained for older
workflows.
It will emit a warning!
Even though it can use the WFA you should use vcfwave instead.
T}
T{
\f[B]vcfannotate\f[R]
T}@T{
Intersect the records in the VCF file with targets provided in a BED
file.
Intersections are done on the reference sequences in the VCF file.
If no VCF filename is specified on the command line (last argument) the
VCF read from stdin.
T}
T{
\f[B]vcfannotategenotypes\f[R]
T}@T{
Examine genotype correspondence.
Annotate genotypes in the first file with genotypes in the second adding
the genotype as another flag to each sample filed in the first file.
annotation-tag is the name of the sample flag which is added to store
the annotation.
also adds a `has_variant' flag for sites where the second file has a
variant.
T}
T{
\f[B]vcfbreakmulti\f[R]
T}@T{
If multiple alleles are specified in a single record, break the record
into multiple lines, preserving allele-specific INFO fields.
T}
T{
\f[B]vcfcat\f[R]
T}@T{
Concatenates VCF files
T}
T{
\f[B]vcfclassify\f[R]
T}@T{
Creates a new VCF where each variant is tagged by allele class: snp,
ts/tv, indel, mnp
T}
T{
\f[B]vcfcleancomplex\f[R]
T}@T{
Removes reference-matching sequence from complex alleles and adjusts
records to reflect positional change.
T}
T{
\f[B]vcfcombine\f[R]
T}@T{
Combine VCF files positionally, combining samples when sites and alleles
are identical.
Any number of VCF files may be combined.
The INFO field and other columns are taken from one of the files which
are combined when records in multiple files match.
Alleles must have identical ordering to be combined into one record.
If they do not, multiple records will be emitted.
T}
T{
\f[B]vcfcommonsamples\f[R]
T}@T{
Generates each record in the first file, removing samples not present in
the second
T}
T{
\f[B]vcfcreatemulti\f[R]
T}@T{
Go through sorted VCF and when overlapping alleles are represented
across multiple records, merge them into a single multi-ALT record.
See the documentation for more information.
T}
T{
\f[B]vcfecho\f[R]
T}@T{
Echo VCF to stdout (simple demo)
T}
T{
\f[B]vcfevenregions\f[R]
T}@T{
Generates a list of regions, e.g.\ chr20:10..30 using the variant
density information provided in the VCF file to ensure that the regions
have even numbers of variants.
This can be use to reduce the variance in runtime when dividing variant
detection or genotyping by genomic coordinates.
T}
T{
\f[B]vcffixup\f[R]
T}@T{
Generates a VCF stream where AC and NS have been generated for each
record using sample genotypes
T}
T{
\f[B]vcfflatten\f[R]
T}@T{
Removes multi-allelic sites by picking the most common alternate.
Requires allele frequency specification `AF' and use of `G' and `A' to
specify the fields which vary according to the Allele or Genotype.
VCF file may be specified on the command line or piped as stdin.
T}
T{
\f[B]vcfgeno2alleles\f[R]
T}@T{
modifies the genotypes field to provide the literal alleles rather than
indexes
T}
T{
\f[B]vcfgeno2haplo\f[R]
T}@T{
Convert genotype-based phased alleles within \[en]window-size into
haplotype alleles.
Will break haplotype construction when encountering non-phased genotypes
on input.
T}
T{
\f[B]vcfgenosamplenames\f[R]
T}@T{
Get samplenames
T}
T{
\f[B]vcfglbound\f[R]
T}@T{
Adjust GLs so that the maximum GL is 0 by dividing all GLs for each
sample by the max.
T}
T{
\f[B]vcfglxgt\f[R]
T}@T{
Set genotypes using the maximum genotype likelihood for each sample.
T}
T{
\f[B]vcfindex\f[R]
T}@T{
Adds an index number to the INFO field (id=position)
T}
T{
\f[B]vcfinfo2qual\f[R]
T}@T{
Sets QUAL from info field tag keyed by [key].
The VCF file may be omitted and read from stdin.
The average of the field is used if it contains multiple values.
T}
T{
\f[B]vcfinfosummarize\f[R]
T}@T{
Take annotations given in the per-sample fields and add the mean,
median, min, or max to the site-level INFO.
T}
T{
\f[B]vcfintersect\f[R]
T}@T{
VCF set analysis
T}
T{
\f[B]vcfkeepgeno\f[R]
T}@T{
Reduce file size by removing FORMAT fields not listed on the command
line from sample specifications in the output
T}
T{
\f[B]vcfkeepinfo\f[R]
T}@T{
To decrease file size remove INFO fields not listed on the command line
T}
T{
\f[B]vcfkeepsamples\f[R]
T}@T{
outputs each record in the vcf file, removing samples not listed on the
command line
T}
T{
\f[B]vcfld\f[R]
T}@T{
Compute LD
T}
T{
\f[B]vcfleftalign\f[R]
T}@T{
Left-align indels and complex variants in the input using a pairwise
ref/alt alignment followed by a heuristic, iterative left realignment
process that shifts indel representations to their absolute leftmost
(5\[cq]) extent.
T}
T{
\f[B]vcflength\f[R]
T}@T{
Add length info field
T}
T{
\f[B]vcfnullgenofields\f[R]
T}@T{
Makes the FORMAT for each variant line the same (uses all the FORMAT
fields described in the header).
Fills out per-sample fields to match FORMAT.
Expands GT values of `.' with number of alleles based on ploidy (eg:
`./.' for dipolid).
T}
T{
\f[B]vcfnumalt\f[R]
T}@T{
outputs a VCF stream where NUMALT has been generated for each record
using sample genotypes
T}
T{
\f[B]vcfoverlay\f[R]
T}@T{
Overlay records in the input vcf files with order as precedence.
T}
T{
\f[B]vcfprimers\f[R]
T}@T{
For each VCF record, extract the flanking sequences, and write them to
stdout as FASTA records suitable for alignment.
T}
T{
\f[B]vcfqual2info\f[R]
T}@T{
Puts QUAL into an info field tag keyed by [key].
T}
T{
\f[B]vcfremap\f[R]
T}@T{
For each alternate allele, attempt to realign against the reference with
lowered gap open penalty.
If realignment is possible, adjust the cigar and reference/alternate
alleles.
Observe how different alignment parameters, including context and
entropy-dependent ones, influence variant classification and
interpretation.
T}
T{
\f[B]vcfremoveaberrantgenotypes\f[R]
T}@T{
strips samples which are homozygous but have observations implying
heterozygosity.
Remove samples for which the reported genotype (GT) and observation
counts disagree (AO, RO).
T}
T{
\f[B]vcfremovesamples\f[R]
T}@T{
outputs each record in the vcf file, removing samples listed on the
command line
T}
T{
\f[B]vcfsample2info\f[R]
T}@T{
Take annotations given in the per-sample fields and add the mean,
median, min, or max to the site-level INFO.
T}
T{
\f[B]vcfsamplediff\f[R]
T}@T{
Establish putative somatic variants using reported differences between
germline and somatic samples.
Tags each record where the listed sample genotypes differ with .
The first sample is assumed to be germline, the second somatic.
Each record is tagged with ={germline,somatic,loh} to specify the type
of variant given the genotype difference between the two samples.
T}
T{
\f[B]vcfsamplenames\f[R]
T}@T{
List sample names
T}
T{
\f[B]vcfstreamsort\f[R]
T}@T{
Sorts the input (either stdin or file) using a streaming sort algorithm.
Guarantees that the positional order is correct provided out-of-order
variants are no more than 100 positions in the VCF file apart.
T}
T{
\f[B]vcfwave\f[R]
T}@T{
Realign reference and alternate alleles with WFA, parsing out the
`primitive' alleles into multiple VCF records.
New records have IDs that reference the source record ID.
Genotypes/samples are handled correctly.
Deletions generate haploid/missing genotypes at overlapping sites.
T}
.TE
.SS statistics
.PP
.TS
tab(@);
lw(40.4n) lw(29.6n).
T{
statistics command
T}@T{
description
T}
_
T{
\f[B]bFst\f[R]
T}@T{
\f[B]bFst\f[R] is a Bayesian approach to Fst.
Importantly \f[B]bFst\f[R] accounts for genotype uncertainty in the
model using genotype likelihoods.
For a more detailed description see: \[ga]A Bayesian approach to
inferring population structure from dominant markers\[cq] by Holsinger
et al.\ Molecular Ecology Vol 11, issue 7 2002.
The likelihood function has been modified to use genotype likelihoods
provided by variant callers.
There are five free parameters estimated in the model: each
subpopulation\[cq]s allele frequency and Fis (fixation index, within
each subpopulation), a free parameter for the total population\[cq]s
allele frequency, and Fst.
T}
T{
\f[B]genotypeSummary\f[R]
T}@T{
Generates a table of genotype counts.
Summarizes genotype counts for bi-allelic SNVs and indel
T}
T{
\f[B]iHS\f[R]
T}@T{
\f[B]iHS\f[R] calculates the integrated haplotype score which measures
the relative decay of extended haplotype homozygosity (EHH) for the
reference and alternative alleles at a site (see: voight et al.\ 2006,
Spiech & Hernandez 2014).
T}
T{
\f[B]meltEHH\f[R]
T}@T{
T}
T{
\f[B]pFst\f[R]
T}@T{
\f[B]pFst\f[R] is a probabilistic approach for detecting differences in
allele frequencies between two populations.
T}
T{
\f[B]pVst\f[R]
T}@T{
\f[B]pVst\f[R] calculates vst, a measure of CNV stratification.
T}
T{
\f[B]permuteSmooth\f[R]
T}@T{
\f[B]permuteSmooth\f[R] is a method for adding empirical p-values
smoothed wcFst scores.
T}
T{
\f[B]plotHaps\f[R]
T}@T{
\f[B]plotHaps\f[R] provides the formatted output that can be used with
`bin/plotHaplotypes.R'.
T}
T{
\f[B]popStats\f[R]
T}@T{
General population genetic statistics for each SNP
T}
T{
\f[B]segmentFst\f[R]
T}@T{
\f[B]segmentFst\f[R] creates genomic segments (bed file) for regions
with high wcFst
T}
T{
\f[B]segmentIhs\f[R]
T}@T{
Creates genomic segments (bed file) for regions with high wcFst
T}
T{
\f[B]sequenceDiversity\f[R]
T}@T{
The \f[B]sequenceDiversity\f[R] program calculates two popular metrics
of haplotype diversity: pi and extended haplotype homozygoisty (eHH).
Pi is calculated using the Nei and Li 1979 formulation.
eHH a convenient way to think about haplotype diversity.
When eHH = 0 all haplotypes in the window are unique and when eHH = 1
all haplotypes in the window are identical.
T}
T{
\f[B]vcfaltcount\f[R]
T}@T{
count the number of alternate alleles in all records in the vcf file
T}
T{
\f[B]vcfcountalleles\f[R]
T}@T{
Count alleles
T}
T{
\f[B]vcfgenosummarize\f[R]
T}@T{
Adds summary statistics to each record summarizing qualities reported in
called genotypes.
Uses: RO (reference observation count), QR (quality sum reference
observations) AO (alternate observation count), QA (quality sum
alternate observations)
T}
T{
\f[B]vcfgenotypecompare\f[R]
T}@T{
adds statistics to the INFO field of the vcf file describing the amount
of discrepancy between the genotypes (GT) in the vcf file and the
genotypes reported in the .
use this after vcfannotategenotypes to get correspondence statistics for
two vcfs.
T}
T{
\f[B]vcfgenotypes\f[R]
T}@T{
Report the genotypes for each sample, for each variant in the VCF.
Convert the numerical represenation of genotypes provided by the GT
field to a human-readable genotype format.
T}
T{
\f[B]vcfparsealts\f[R]
T}@T{
Alternate allele parsing method.
This method uses pairwise alignment of REF and ALTs to determine
component allelic primitives for each alternate allele.
T}
T{
\f[B]vcfrandom\f[R]
T}@T{
Generate a random VCF file
T}
T{
\f[B]vcfrandomsample\f[R]
T}@T{
Randomly sample sites from an input VCF file, which may be provided as
stdin.
Scale the sampling probability by the field specified in KEY.
This may be used to provide uniform sampling across allele frequencies,
for instance.
T}
T{
\f[B]vcfroc\f[R]
T}@T{
Generates a pseudo-ROC curve using sensitivity and specificity estimated
against a putative truth set.
Thresholding is provided by successive QUAL cutoffs.
T}
T{
\f[B]vcfsitesummarize\f[R]
T}@T{
Summarize by site
T}
T{
\f[B]vcfstats\f[R]
T}@T{
Prints statistics about variants in the input VCF file.
T}
T{
\f[B]wcFst\f[R]
T}@T{
\f[B]wcFst\f[R] is Weir & Cockerham\[cq]s Fst for two populations.
Negative values are VALID, they are sites which can be treated as zero
Fst.
For more information see Evolution, Vol.
38 N.
6 Nov 1984.
Specifically \f[B]wcFst\f[R] uses equations 1,2,3,4.
T}
.TE
.SH SOURCE CODE
.PP
See the source code repository at https://github.com/vcflib/vcflib
.SH CREDIT
.PP
Citations are the bread and butter of Science.
If you are using this software in your research and want to support our
future work, please cite the following publication:
.PP
Please cite:
.PP
A spectrum of free software tools for processing the VCF variant call
format: vcflib, bio-vcf, cyvcf2, hts-nim and
slivar (https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009123).
Garrison E, Kronenberg ZN, Dawson ET, Pedersen BS, Prins P (2022), PLoS
Comput Biol 18(5): e1009123.
https://doi.org/10.1371/journal.pcbi.1009123
.SH LICENSE
.PP
Copyright 2011-2024 (C) Erik Garrison and vcflib contributors.
Copyright 2020-2024 (C) Pjotr Prins MIT licensed.
.SH AUTHORS
Erik Garrison and vcflib contributors.