1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
/*
vcflib C++ library for parsing and manipulating VCF files
Copyright © 2010-2020 Erik Garrison
Copyright © 2020 Pjotr Prins
This software is published under the MIT License. See the LICENSE file.
*/
#include "Variant.h"
#include "split.h"
#include "cdflib.hpp"
#include "pdflib.hpp"
#include "var.hpp"
#include "makeUnique.h"
#include <string>
#include <iostream>
#include <math.h>
#include <cmath>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <getopt.h>
#include "gpatInfo.hpp"
using namespace std;
using namespace vcflib;
struct indv{
int nhet ;
int nhom ;
int nalt ;
int nocall;
};
void printHelp(void){
cerr << endl << endl;
cerr << "INFO: help" << endl;
cerr << "INFO: description:" << endl;
cerr << "Generates a table of genotype counts. Summarizes genotype counts for bi-allelic SNVs and indel " << endl << endl;
cerr << "INFO: output: table of genotype counts for each individual." << endl;
cerr << "INFO: usage: genotypeSummmary --type PL --target 0,1,2,3,4,5,6,7 --file my.vcf --snp " << endl;
cerr << endl;
cerr << "INFO: required: t,target -- a zero based comma separated list of target individuals corresponding to VCF columns " << endl;
cerr << "INFO: required: f,file -- proper formatted VCF " << endl;
cerr << "INFO: required, y,type -- genotype likelihood format; genotype : GL,PL,GP " << endl;
cerr << "INFO: optional, r,region -- a tabix compliant region : chr1:1-1000 or chr1 " << endl;
cerr << "INFO: optional, s,snp -- Only count SNPs " << endl;
cerr << "INFO: optional, a,ancestral -- describe counts relative to the ancestral allele defined as AA in INFO" << endl;
cerr << endl << "Type: statistics" << endl << endl;
printVersion();
}
double bound(double v){
if(v <= 0.00001){
return 0.00001;
}
if(v >= 0.99999){
return 0.99999;
}
return v;
}
void loadIndices(map<int, int> & index, string set){
vector<string> indviduals = split(set, ",");
vector<string>::iterator it = indviduals.begin();
for(; it != indviduals.end(); it++){
index[ atoi( (*it).c_str() ) ] = 1;
}
}
int main(int argc, char** argv) {
bool snp = false;
// set the random seed for MCMC
srand((unsigned)time(NULL));
// the filename
string filename;
// open standardout
// set region to scaffold
string region = "NA";
// using vcflib; thanks to Erik Garrison
VariantCallFile variantFile;
// zero based index for the target and background indivudals
map<int, int> it, ib;
// genotype likelihood format
string type = "NA";
// are we polarizing the counts relative to the ancestral allele?
bool use_ancestral_state = false;
set<char> allowed_ancestral_bases = { 'A', 'T', 'C', 'G' };
const struct option longopts[] =
{
{"version" , 0, 0, 'v'},
{"help" , 0, 0, 'h'},
{"file" , 1, 0, 'f'},
{"target" , 1, 0, 't'},
{"region" , 1, 0, 'r'},
{"type" , 1, 0, 'y'},
{"snp" , 0, 0, 's'},
{"ancestral" , 0, 0, 'a'},
{0,0,0,0}
};
int index;
int iarg=0;
while(iarg != -1)
{
iarg = getopt_long(argc, argv, "y:r:d:t:b:f:chvsa", longopts, &index);
switch (iarg)
{
case 'a':
{
use_ancestral_state = true;
break;
}
case 's':
{
snp = true;
break;
}
case 'h':
{
printHelp();
return 0;
}
case 'v':
{
printVersion();
return 0;
}
case 't':
{
loadIndices(it, optarg);
cerr << "INFO: there are " << it.size() << " individuals in the target" << endl;
cerr << "INFO: target ids: " << optarg << endl;
break;
}
case 'b':
{
loadIndices(ib, optarg);
cerr << "INFO: there are " << ib.size() << " individuals in the background" << endl;
cerr << "INFO: background ids: " << optarg << endl;
break;
}
case 'f':
{
cerr << "INFO: file: " << optarg << endl;
filename = optarg;
break;
}
case 'r':
{
cerr << "INFO: set seqid region to : " << optarg << endl;
region = optarg;
break;
}
case 'y':
{
type = optarg;
cerr << "INFO: set genotype likelihood to: " << type << endl;
break;
}
default:
break;
}
}
if(filename.empty()){
cerr << "FATAL: failed to specify a file" << endl;
printHelp();
}
bool is_open;
if (filename == "-") {
is_open=variantFile.open(std::cin);
} else {
is_open=variantFile.open(filename);
}
if (!is_open) {
cerr << "FATAL: could not open file for reading" << endl;
printHelp();
}
if(region != "NA"){
if(! variantFile.setRegion(region)){
cerr <<"FATAL: unable to set region" << endl;
return 1;
}
}
if (!variantFile.is_open()) {
cerr << "FATAL: could not open VCF for reading" << endl;
printHelp();
return 1;
}
map<string, int> okayGenotypeLikelihoods;
okayGenotypeLikelihoods["PL"] = 1;
okayGenotypeLikelihoods["GL"] = 1;
okayGenotypeLikelihoods["GP"] = 1;
okayGenotypeLikelihoods["GT"] = 1;
if(type == "NA"){
cerr << "FATAL: failed to specify genotype likelihood format : PL or GL" << endl;
printHelp();
return 1;
}
if(okayGenotypeLikelihoods.find(type) == okayGenotypeLikelihoods.end()){
cerr << "FATAL: genotype likelihood is incorrectly formatted, only use: PL or GL" << endl;
printHelp();
return 1;
}
Variant var(variantFile);
vector<string> samples = variantFile.sampleNames;
int nsamples = samples.size();
vector<indv *> countData;
vector<string > countDataSampleName;
for ( map<int ,int>::iterator x=it.begin(); x!=it.end(); ++x) {
countDataSampleName.push_back(samples[x->first] );
}
for(int i = 0; i < it.size(); i++){
indv * dip = new indv;
dip->nhet = 0;
dip->nhom = 0;
dip->nalt = 0;
dip->nocall = 0;
countData.push_back(dip);
}
while (variantFile.getNextVariant(var)) {
// biallelic sites naturally
if(var.alt.size() > 1){
continue;
}
if(snp){
bool hit =false;
for(vector<string>::iterator it = var.alleles.begin(); it != var.alleles.end(); it++){
if((*it).size() > 1){
hit = true;
}
}
if(hit){
continue;
}
}
// decide if we can polarize the site if we are using the ancestral allele
bool ref_is_ancestral_allele = true;
if (use_ancestral_state) {
// we need the ancestral allele to decide what to do at this site
if (var.info.find("AA") == var.info.end()) continue;
string ancestral_allele = var.info["AA"].front();
// if we do not have a polarized site with only allowed bases in the ancestral allele, skip it
bool allowed = true;
for (string::iterator c = ancestral_allele.begin(); c != ancestral_allele.end(); ++c) {
if (!allowed_ancestral_bases.count(*c)) {
allowed = false;
break;
}
}
if (!allowed) continue;
ref_is_ancestral_allele = (ancestral_allele == var.ref);
}
vector < map< string, vector<string> > > target, background, total;
int index = 0;
for(int nsamp = 0; nsamp < nsamples; nsamp++){
if(it.find(index) != it.end() ){
const map<string, vector<string> >& sample = var.samples[ samples[nsamp]];
target.push_back(sample);
}
index += 1;
}
using Detail::makeUnique;
unique_ptr<genotype> populationTarget ;
if(type == "PL"){
populationTarget = makeUnique<pl>();
}
if(type == "GL"){
populationTarget = makeUnique<gl>();
}
if(type == "GP"){
populationTarget = makeUnique<gp>();
}
if(type == "GT"){
populationTarget = makeUnique<gt>();
}
populationTarget->loadPop(target, var.sequenceName, var.position);
for(int i = 0; i < populationTarget->genoIndex.size() ; i++){
if(populationTarget->genoIndex[i] == -1){
countData[i]->nocall += 1;
}
else if (populationTarget->genoIndex[i] == 0) {
if (!use_ancestral_state || ref_is_ancestral_allele) {
countData[i]->nhom += 1;
} else {
countData[i]->nalt += 1;
}
}
else if (populationTarget->genoIndex[i] == 1){
countData[i]->nhet += 1;
}
else if (populationTarget->genoIndex[i] == 2) {
if (!use_ancestral_state || ref_is_ancestral_allele) {
countData[i]->nalt += 1;
} else {
countData[i]->nhom += 1;
}
}
else{
std::cerr << "FATAL: unknown genotype index" << std::endl;
cerr << populationTarget->genoIndex[i] << endl;
cerr << var << endl;
exit(1);
}
}
;
}
if (!use_ancestral_state) {
std::cout << "#sample-id\tn-nocall\tn-hom-ref\tn-het\tn-hom-alt" << std::endl;
} else {
std::cout << "#sample-id\tn-nocall\tn-hom-ancestral\tn-het\tn-hom-derived" << std::endl;
}
for(int i = 0; i < countData.size(); i++){
std::cout << countDataSampleName[i]
<< "\t" << countData[i]->nocall
<< "\t" << countData[i]->nhom
<< "\t" << countData[i]->nhet
<< "\t" << countData[i]->nalt
<< std::endl;
}
return 0;
}
|