File: iHS.cpp

package info (click to toggle)
libvcflib 1.0.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 49,732 kB
  • sloc: cpp: 39,194; perl: 474; python: 321; ruby: 285; sh: 247; ansic: 198; makefile: 125; javascript: 94; lisp: 55
file content (664 lines) | stat: -rw-r--r-- 16,066 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/*
    vcflib C++ library for parsing and manipulating VCF files

    Copyright © 2010-2020 Erik Garrison
    Copyright © 2020      Pjotr Prins

    This software is published under the MIT License. See the LICENSE file.
*/

#include "Variant.h"
#include "split.h"
#include "cdflib.hpp"
#include "pdflib.hpp"
#include "var.hpp"

#include <string>
#include <iostream>
#include <math.h>
#include <cmath>
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
#include <getopt.h>
#include "gpatInfo.hpp"
#include "makeUnique.h"
// maaas speed

#if defined HAS_OPENMP
#include <omp.h>
// print lock
omp_lock_t lock;
#endif


struct opts{
  int         threads             ;
  std::string filename            ;
  std::string mapFile             ;
  std::string seqid               ;
  std::string geneticMapFile      ;
  std::string type                ;
  std::string region              ;
  std::map<int, double> geneticMap;
  double      af                  ;

}globalOpts;


using namespace std;
using namespace vcflib;

void printHelp(void){
  cerr << R"(
iHS calculates the integrated haplotype score which measures the relative decay of extended haplotype homozygosity (EHH) for the reference and alternative alleles at a site (see: voight et al. 2006, Spiech & Hernandez 2014).

Our code is highly concordant with both implementations mentioned. However, we do not set an upper limit to the allele frequency.  iHS can be run without a genetic map, in which case the change in EHH is integrated over a constant.  Human genetic maps for GRCh36 and GRCh37 (hg18 & hg19) can be found at: http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/ . iHS by default interpolates SNV positions to genetic position (you don't need a genetic position for every VCF entry in the map file).

iHS analyses requires normalization by allele frequency.  It is important that iHS is calculated over large regions so that the normalization does not down weight real signals.  For genome-wide runs it is recommended to run slightly overlapping windows and throwing out values that fail integration (columns 7 & 8 in the output) and then removing duplicates by using the 'sort' and 'uniq' linux commands.  Normalization of the output is as simple as running 'normalize-iHS'.

INFO: help
INFO: description:
     iHS calculates the integrated ratio of haplotype decay between the reference and non-reference allele.
Output : 4 columns :
     1. seqid
     2. position
     3. target allele frequency
     4. integrated EHH (alternative)
     5. integrated EHH (reference)
     6. iHS ln(iEHHalt/iEHHref)
     7. != 0 integration failure
     8. != 0 integration failure

Usage: iHS --target 0,1,2,3,4,5,6,7 --file my.phased.vcf  \
           --region chr1:1-1000 > STDOUT 2> STDERR

Params:
       required: t,target  <STRING>  A zero base comma separated list of target
                                     individuals corresponding to VCF columns
       required: r,region  <STRING>  A tabix compliant genomic range
                                     format: "seqid:start-end" or "seqid"
       required: f,file    <STRING>  Proper formatted and phased VCF.
       required: y,type    <STRING>  Genotype likelihood format: GT,PL,GL,GP
       optional: a,af      <DOUBLE>  Alternative alleles with frquences less
                                     than [0.05] are skipped.
       optional: x,threads <INT>     Number of CPUS [1].
       recommended: g,gen <STRING>   A PLINK formatted map file.

)" << endl ;
  cerr << endl << "Type: statistics" << endl << endl;
  cerr << endl;

  printVersion();

  exit(1);
}


bool gDist(int start, int end, double * gd){

  if(globalOpts.geneticMap.find(start) == globalOpts.geneticMap.end()){
    return false;
  }
  if(globalOpts.geneticMap.find(end) == globalOpts.geneticMap.end()){
    return false;
  }
  *gd = abs(globalOpts.geneticMap[start] - globalOpts.geneticMap[end]);
  return true;
}

void loadGeneticMap(int start, int end){

  if(globalOpts.geneticMapFile.empty()){
    std::cerr << "WARNING: No genetic map." << std::endl;
    std::cerr << "WARNING: A constant genetic distance is being used: 0.001." << std::endl;
    return;
  }

  ifstream featureFile (globalOpts.geneticMapFile.c_str());

  string line;

  int lastpos      = 0;
  double lastvalue = 0;

  if(featureFile.is_open()){

    while(getline(featureFile, line)){

      vector<string> region = split(line, "\t");

      if(region.front() != globalOpts.seqid){
	std::cerr << "WARNING: seqid MisMatch: " << region.front() << " " << globalOpts.seqid << std::endl;
	continue;
      }

      int   pos = atoi(region[3].c_str()) ;
      double cm = atof(region[2].c_str()) ;

      if(lastpos == 0 && start > pos){
	lastpos = pos;
	continue;
      }

      int diff     = abs(pos - lastpos);
      double vdiff = abs(lastvalue - cm );
      double chunk = vdiff/double(diff);

      double running = lastvalue;

      for(int i = lastpos; i < pos; i++){
	globalOpts.geneticMap[i] = running;
	running += chunk;
      }

      if(pos > end){
	break;
      }


      lastpos = pos;
      lastvalue = cm;
    }
  }

  featureFile.close();

  if(globalOpts.geneticMap.size() < 1){
    std::cerr << "FATAL: Problem loading genetic map" << std::endl;
    exit(1);
  }
}


void clearHaplotypes(string **haplotypes, int ntarget){
  for(int i= 0; i < ntarget; i++){
    haplotypes[i][0].clear();
    haplotypes[i][1].clear();
  }
}

void loadIndices(map<int, int> & index, string set){

  vector<string>  indviduals = split(set, ",");
  vector<string>::iterator it = indviduals.begin();

  for(; it != indviduals.end(); it++){
    index[ atoi( (*it).c_str() ) ] = 1;
  }
}

void countHaps(int nhaps, map<string, int> & targetH,
	       string **haplotypes, int start, int end){

  for(int i = 0; i < nhaps; i++){

    std::string h1 =  haplotypes[i][0].substr(start, (end - start)) ;
    std::string h2 =  haplotypes[i][1].substr(start, (end - start)) ;

    if(targetH.find(h1)  == targetH.end()){
      targetH[h1] = 1;
    }
    else{
      targetH[h1]++;
    }
    if(targetH.find(h2)  == targetH.end()){
      targetH[h2] = 1;
    }
    else{
      targetH[h2]++;
    }
  }
}

void computeNs(map<string, int> & targetH, int start,
	       int end, double * sumT, char ref, bool dir){

  for( map<string, int>::iterator th = targetH.begin();
       th != targetH.end(); th++){

    if(th->second < 2){
      continue;
    }


    // end is extending ; check first base
    if(dir){
      if( th->first[0] == ref){

	//	std::cerr << "count dat: " << th->first << " " << th->second << " " << ref << " " << dir << endl;


	*sumT += r8_choose(th->second, 2);
      }
    }

    // start is extending ; check last base
    else{

      int last = th->first.size() -1;
      if( th->first[last] == ref ){
	//	std::cerr << "count dat:" << th->first << " " << th->second << " " << ref << " " << dir << endl;


      	*sumT += r8_choose(th->second, 2);
      }
    }
  }
}

bool calcEhh(string **haplotypes, int start,
	     int end, char ref, int nhaps,
	     double * ehh, double  div, bool dir){

  double sum = 0 ;
  map<string , int> refH;

  countHaps(nhaps, refH, haplotypes, start, end);
  computeNs(refH, start, end, &sum, ref, dir   );

  double internalEHH = sum / (r8_choose(div, 2));

  if(internalEHH > 1){
    std::cerr << "FATAL: internal error." << std::endl;
    exit(1);
  }

  *ehh = internalEHH;

  return true;
}

int integrate(string **haplotypes   ,
	      vector<long int> & pos,
	      bool         direction,
	      int               maxl,
	      int                snp,
	      char               ref,
	      int              nhaps,
	      double *           iHH,
	      double           denom ){

  double ehh = 1;

  int start = snp;
  int end   = snp;

  // controls the substring madness
  if(!direction){
    start += 1;
    end += 1;
  }

  while(ehh > 0.05){
    if(direction){
      end += 1;
    }
    else{
      start -= 1;
    }
    if(start < 0){
      return 1;
    }
    if(end > maxl){
      return 1;
    }
    double ehhRT = 0;
    if(!calcEhh(haplotypes,
		start, end,
		ref, nhaps,
		&ehhRT, denom,
		direction)){
      return 1;
    }

    if(ehhRT <= 0.05){
      return 0;
    }

    double delta_gDist = 0.001;

    bool veryLongGap = false ;
    double dist      =     0 ;

    if(direction){
      gDist(pos[end-1], pos[end], &delta_gDist);
      dist = abs(pos[end-1] - pos[end]);
    }
    else{
      gDist(pos[start + 1], pos[start], &delta_gDist);
      dist = abs(pos[end-1] - pos[end]);

    }

    if(dist > 10000){
      return 1;
    }
    double correction = 1;
    if(dist > 5000){
      correction = 5000 / dist;
    }

    *iHH += ((ehh + ehhRT)/2)*delta_gDist*correction;
    ehh = ehhRT;

  }

  return 10;
}

void calc(string **haplotypes, int nhaps,
	  vector<double> & afs, vector<long int> & pos,
	  vector<int> & target, vector<int> & background, string seqid){

  int maxl = haplotypes[0][0].length();

#if defined HAS_OPENMP
#pragma omp parallel for schedule(dynamic, 20)
#endif

  for(int snp = 0; snp < maxl; snp++){

    double ihhR     = 0;
    double ihhA     = 0;

    map<string , int> refH;

    countHaps(nhaps, refH, haplotypes, snp, snp+1);


    double denomP1 = double(refH["0"]);
    double denomP2 = double(refH["1"]);

    int refFail = 0;
    int altFail = 0;


    refFail += integrate(haplotypes, pos, true,  maxl, snp, '0', nhaps, &ihhR, denomP1);

    refFail += integrate(haplotypes, pos, false, maxl, snp, '0', nhaps, &ihhR,  denomP1);

    altFail += integrate(haplotypes, pos, true, maxl, snp,  '1', nhaps, &ihhA, denomP2);

    altFail += integrate(haplotypes, pos, false, maxl, snp,  '1', nhaps, &ihhA, denomP2);

    if(ihhR < 0.0001 || ihhA < 0.0001){
      continue;
    }

#if defined HAS_OPENMP
    omp_set_lock(&lock);
#endif
    cout << seqid
	 << "\t" << pos[snp]
	 << "\t" << afs[snp]
	 << "\t" << ihhR
	 << "\t" << ihhA
	 << "\t" << log(ihhA/ihhR)
	 << "\t" << refFail
	 << "\t" << altFail << std::endl;

#if defined HAS_OPENMP
    omp_unset_lock(&lock);
#endif
  }
}

void loadPhased(string **haplotypes, genotype * pop, int ntarget){

  int indIndex = 0;

  for(vector<string>::iterator ind = pop->gts.begin(); ind != pop->gts.end(); ind++){
    string g = (*ind);
    vector< string > gs = split(g, "|");
    haplotypes[indIndex][0].append(gs[0]);
    haplotypes[indIndex][1].append(gs[1]);
    indIndex += 1;
  }
}

int main(int argc, char** argv) {

  globalOpts.threads = 1   ;
  globalOpts.af      = 0.05;

  // zero based index for the target and background indivudals

  map<int, int> it, ib;

    const struct option longopts[] =
      {
	{"version"   , 0, 0, 'v'},
	{"help"      , 0, 0, 'h'},
        {"file"      , 1, 0, 'f'},
	{"target"    , 1, 0, 't'},
	{"region"    , 1, 0, 'r'},
	{"gen"       , 1, 0, 'g'},
	{"type"      , 1, 0, 'y'},
	{"threads"   , 1, 0, 'x'},
	{"af"        , 1, 0, 'a'},
	{0,0,0,0}
      };

    int findex;
    int iarg=0;

    while(iarg != -1)
      {
	iarg = getopt_long(argc, argv, "a:x:g:y:r:d:t:b:f:hv", longopts, &findex);

	switch (iarg)
	  {
	  case 'a':
	    {
	      globalOpts.af = atof(optarg);
	      break;
	    }
	  case 'x':
	    {
	      globalOpts.threads = atoi(optarg);
	      break;
	    }
	  case 'g':
	    {
	      globalOpts.geneticMapFile = optarg;
	      break;
	    }
	  case 'h':
	    {
	      printHelp();
	      break;
	    }
	  case 'v':
	    {
	      printVersion();
	      break;
	    }
	  case 'y':
	    {
	      globalOpts.type = optarg;
	      break;
	    }
	  case 't':
	    {
	      loadIndices(it, optarg);
	      cerr << "INFO: there are " << it.size() << " individuals in the target" << endl;
	      cerr << "INFO: target ids: " << optarg << endl;
	      break;
	    }
	  case 'f':
	    {
	      cerr << "INFO: file: " << optarg  <<  endl;
	      globalOpts.filename = optarg;
	      break;
	    }
	  case 'r':
	    {
	      cerr << "INFO: set seqid region to : " << optarg << endl;
	      globalOpts.region = optarg;
	      break;
	    default:
	      break;
	    }
	  }
      }
#if defined HAS_OPENMP
  omp_set_num_threads(globalOpts.threads);
#endif
    map<string, int> okayGenotypeLikelihoods;
    okayGenotypeLikelihoods["PL"] = 1;
    okayGenotypeLikelihoods["GL"] = 1;
    okayGenotypeLikelihoods["GP"] = 1;
    okayGenotypeLikelihoods["GT"] = 1;


    // add an option for dumping

//    for(std::map<int, double>::iterator gm = geneticMap.begin(); gm != geneticMap.end(); gm++){
//      cerr << "pos: " << gm->first << " cm: " << gm->second << endl;
//    }

    if(globalOpts.type.empty()){
      cerr << "FATAL: failed to specify genotype likelihood format : PL or GL" << endl;
      printHelp();
      exit(1);
    }
    if(okayGenotypeLikelihoods.find(globalOpts.type) == okayGenotypeLikelihoods.end()){
      cerr << "FATAL: genotype likelihood is incorrectly formatted, only use: PL or GL" << endl;
      printHelp();
      exit(1);
    }

    if(globalOpts.filename.empty()){
      cerr << "FATAL: did not specify a file" << endl;
      printHelp();
      exit(1);
    }

    if(it.size() < 2){
      cerr << "FATAL: target option is required -- or -- less than two individuals in target\n";
      printHelp();
      exit(1);
    }

    // using vcflib; thanksErik

    VariantCallFile variantFile;

    variantFile.open(globalOpts.filename);

    if(globalOpts.region.empty()){
      cerr << "FATAL: region required" << endl;
      exit(1);
    }
    if(! variantFile.setRegion(globalOpts.region)){
      cerr <<"WARNING: unable to set region" << endl;
      exit(0);
    }

    if (!variantFile.is_open()) {
      exit(1);
    }

    Variant var( variantFile );
    vector<int> target_h, background_h;

    int index   = 0;
    int indexi  = 0;


    vector<string> samples = variantFile.sampleNames;
    int nsamples = samples.size();

    for(vector<string>::iterator samp = samples.begin(); samp != samples.end(); samp++){

      string sampleName = (*samp);

      if(it.find(index) != it.end() ){
	target_h.push_back(indexi);
	indexi++;
      }
      index++;
    }


    vector<long int> positions;

    vector<double> afs;

    string **haplotypes = new string*[target_h.size()];
    for (int i = 0; i < target_h.size(); i++) {
      haplotypes[i] = new string[2];
    }


    while (variantFile.getNextVariant(var)) {

      globalOpts.seqid = var.sequenceName;

      if(!var.isPhased()){
	cerr << "FATAL: Found an unphased variant. All genotypes must be phased!" << endl;
	exit(1);
      }

      if(var.alleles.size() > 2){
	continue;
      }

      vector < map< string, vector<string> > > target, background, total;

      int sindex = 0;

      for(int nsamp = 0; nsamp < nsamples; nsamp++){

	map<string, vector<string> > sample = var.samples[ samples[nsamp]];

	if(it.find(sindex) != it.end() ){
	  target.push_back(sample);
	}
	sindex += 1;
      }

      using Detail::makeUnique;

      unique_ptr<genotype> populationTarget    ;

      if(globalOpts.type == "PL"){
	populationTarget     = makeUnique<pl>();
      }
      if(globalOpts.type == "GL"){
	populationTarget     = makeUnique<gl>();
      }
      if(globalOpts.type == "GP"){
	populationTarget     = makeUnique<gp>();
      }
      if(globalOpts.type == "GT"){
	populationTarget     = makeUnique<gt>();
      }

      populationTarget->loadPop(target, var.sequenceName, var.position);

      if(populationTarget->af <= globalOpts.af
	 || populationTarget->nref < 2
	 || populationTarget->nalt < 2){
	;
	continue;
      }
      positions.push_back(var.position);
      afs.push_back(populationTarget->af);
      loadPhased(haplotypes, populationTarget.get(), populationTarget->gts.size());
    }

    if(!globalOpts.geneticMapFile.empty()){
      cerr << "INFO: loading genetics map" << endl;
      loadGeneticMap(positions.front(), positions.back());
      cerr << "INFO: finished loading genetics map" << endl;
    }

    calc(haplotypes, target_h.size(), afs, positions,
	 target_h, background_h, globalOpts.seqid);
    clearHaplotypes(haplotypes, target_h.size());

    exit(0);

}