File: index.dxx

package info (click to toggle)
libvigraimpex 1.10.0%2Bgit20160211.167be93%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 48,024 kB
  • ctags: 25,337
  • sloc: cpp: 55,572; python: 8,495; ansic: 1,267; makefile: 150; sh: 38
file content (608 lines) | stat: -rw-r--r-- 25,347 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/** \mainpage VIGRA Reference Manual

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref Installation
        <BR>&nbsp;&nbsp;&nbsp;<em>how to get started</em>
	<LI> \ref Tutorial
		<BR>&nbsp;&nbsp;&nbsp;<em>first steps with VIGRA</em>
    <LI> \ref Concepts
        <BR>&nbsp;&nbsp;&nbsp;<em>generic interface definitions</em>
    <LI> \ref Utilities
        <BR>&nbsp;&nbsp;&nbsp;<em>Basic helper functionality needed throughout</em>
    <LI> \ref ErrorReporting
        <BR>&nbsp;&nbsp;&nbsp;<em>Exceptions and assertions</em>
    <LI> \ref MathFunctionality
        <BR>&nbsp;&nbsp;&nbsp;<em>Number types, mathematical constants and functions, linear algebra etc.</em>
    <LI> \ref PixelTypes
        <BR>&nbsp;&nbsp;&nbsp;<em>Non-scalar types such as RGBValue and TinyVector</em>
    <LI> \ref ImageDataStructures
        <BR>&nbsp;&nbsp;&nbsp;<em>Images, image iterators, and supporting types and functions</em>
    <LI> \ref MultiDimensionalArrays
        <BR>&nbsp;&nbsp;&nbsp;<em>Arrays, iterators, and supporting types and functions
             for arbitrary dimensions</em>
    <LI> \ref ChunkedArrayClasses
        <BR>&nbsp;&nbsp;&nbsp;<em>Store big data (potentially larger than RAM) as a collection of rectangular blocks</em>
    <LI> \ref GraphDataStructures
        <BR>&nbsp;&nbsp;&nbsp;<em>Graph-based algorithms (e.g. segmentation) and underlying graph classes (e.g. grid graphs for arbitrary dimensions)</em>
    <LI> \ref ImportExport
        <BR>&nbsp;&nbsp;&nbsp;<em>Conversion from and to other image data types</em>
    <LI> \ref ColorConversions
        <BR>&nbsp;&nbsp;&nbsp;<em>Convert between RGB and other color spaces, such as L*u*v*, Y'PbPr</em>
    <LI> \ref ImageProcessing
        <BR>&nbsp;&nbsp;&nbsp;<em>Point operators, image arithmetic, convolution, morphology</em>
    <LI> \ref Registration
         <BR>&nbsp;&nbsp;&nbsp;<em>Transforming different images into a common coordinate system</em>
    <LI> \ref ImageAnalysis
        <BR>&nbsp;&nbsp;&nbsp;<em>Segmentation and feature extraction algorithms</em>
    <LI> \ref MachineLearning
        <BR>&nbsp;&nbsp;&nbsp;<em>Classification algorithms</em>
    <LI> \ref ExampleList
        <BR>&nbsp;&nbsp;&nbsp;<em>Demonstration programs for VIGRA's usage </em>
    <LI> \ref VigraMatlab
        <BR>&nbsp;&nbsp;&nbsp;<em>VIGRA Matlab bindings</em>
    <LI> <b><a href="/usr/share/doc/python-vigra-doc/html/index.html">vigranumpy</a></b>
        <BR>&nbsp;&nbsp;&nbsp;<em>VIGRA Python bindings</em>
    <LI> \ref CreditsChangelog
        <BR>&nbsp;&nbsp;&nbsp;<em>Who contributed what?</em>
    </UL>

    \anchor _details
    <CENTER>
    \section Main VIGRA - Vision with Generic Algorithms
    Version  \vigra_version
    by <a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/">Ullrich K&ouml;the</a>
    </CENTER>

    VIGRA  is a computer vision library that puts its main emphasis on
    <em>flexible algorithms</em>, because
    algorithms represent the principle know-how of this field.
    The library was consequently built
    using <em>generic programming</em> as introduced by Stepanov
    and Musser  and exemplified in the C++
    <a href=\stl_link>Standard Template Library</a>.
    By writing a few adapters (image iterators and accessors)
    you can use VIGRA's algorithms on top of
    <em>your</em> data structures, within <em>your</em> environment. Alternatively,
    you can also use the data structures provided within VIGRA, which can
    be easily adapted to a wide range of applications. VIGRA's flexibility
    comes almost for free: Since the design uses compile-time polymorphism
    (templates), performance of the compiled program approaches that
    of a traditional, hand tuned, inflexible, solution.

    VIGRA's design is documented in the chapter <em>"Reusable Software in
    Computer Vision"</em> by
    <a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/">Ullrich K&ouml;the</a>,
    in: B. J&auml;hne, H. Hau&szlig;ecker, P. Gei&szlig;ler: "Handbook on
    Computer Vision and  Applications", volume 3, Academic Press, 1999.
    If you don't have the book,  you may read a
    <a href="http://hci.iwr.uni-heidelberg.de/vigra/documents/GenericProg2D.ps">draft of this article</a>. A shorter
    article <em><a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/papers/index.php#cite_GenericProg2DCppReport">STL Style Generic Programming with Images</a></em>
    describing some of the
    ideas has appeared in the January 2000 issue of
    <a href="http://www.creport.com/">C++ Report Magazine</a>. The most comprehensive source of information is
    U. K&ouml;the's PhD thesis <em><a href="http://hci.iwr.uni-heidelberg.de/people/ukoethe/papers/index.php#cite_PhD">Generische Programmierung f&uuml;r die Bildverarbeitung</a></em>, but this is written in German.

    VIGRA is subject to this <a href="LICENSE.txt">LICENSE</a>.

    You can also subscribe to the <a href="https://mailhost.informatik.uni-hamburg.de/mailman/listinfo/vigra">VIGRA Mailing List</a> to get instant information about new releases, discuss VIGRA's features and development, and ask the experts for help.



*/

/** \page Concepts Concepts

    <DL>
    <DT>
    Description of the generic interface concepts used within VIGRA.
    <DD>
        <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref AlgebraicConcepts
             <BR>&nbsp;&nbsp;&nbsp;<em>Requirements for types that implement arithmetic operations</em>
        <LI> \ref ImageIterators
             <BR>&nbsp;&nbsp;&nbsp;<em>Requirements for 2D iterators</em>
        <LI> \ref MultiIteratorPage
             <BR>&nbsp;&nbsp;&nbsp;<em>Iterators for multi-dimensional arrays</em>
        <LI> \ref DataAccessors
             <BR>&nbsp;&nbsp;&nbsp;<em>Requirements for data accessors</em>
        <LI> \ref vigra::FunctorTraits
             <BR>&nbsp;&nbsp;&nbsp;<em>Requirements for functor traits</em>
        <LI> \ref CrackEdgeImage
        </UL>
    </DL>
*/

/** \page MathFunctionality Mathematical Tools

    <b>Number types, mathematical constants, special functions, linear algebra</b>
    <p>
    <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref AlgebraicConcepts
             <BR>&nbsp;&nbsp;&nbsp;<em>Requirements for types that implement arithmetic operations</em>
        <LI> \ref NumericPromotionTraits
             <BR>&nbsp;&nbsp;&nbsp;<em>Meta-information about arithmetic types</em>
        <LI> \ref MathConstants
             <BR>&nbsp;&nbsp;&nbsp;<em>M_PI, M_SQRT2</em>
        <LI> <b>Grid Neighborhood Specification</b>
             <UL style="list-style-image:url(documents/bullet.gif)">
             <LI> \ref PixelNeighborhood "2-dimensional" (4- and 8-neighborhood)
             <LI> \ref VoxelNeighborhood "3-dimensional" (6- and 26-neighborhood)
             </UL>
        <LI> <b>Number Types</b>
            <UL style="list-style-image:url(documents/bullet.gif)">
            <LI> \ref vigra::Rational
            <LI> \ref vigra::TinyVector
            <LI> \ref vigra::autodiff::DualVector
            <LI> \ref vigra::FFTWComplex
            <LI> \ref vigra::FixedPoint16
            <LI> \ref vigra::Quaternion
            </UL>
        <LI> \ref RandomNumberGeneration
             <BR>&nbsp;&nbsp;&nbsp;<em>Mersenne twister class and random number functors</em>
        <LI> \ref Polynomials
             <BR>&nbsp;&nbsp;&nbsp;<em>Polynomials and root determination</em>
        <LI> \ref MathFunctions
             <BR>&nbsp;&nbsp;&nbsp;<em>and functors</em>
        <LI> \ref vigra::linalg::Matrix "Matrix class"
             <BR>&nbsp;&nbsp;&nbsp;<em>the matrix class</em>
        <LI> \ref LinearAlgebraModule "Linear Algebra"
             <BR>&nbsp;&nbsp;&nbsp;<em>matrix algebra, solution of linear systems, eigenvalue calculation etc.</em>
        <LI> \ref Unsupervised_Decomposition "Unsupervised Decomposition"
             <BR>&nbsp;&nbsp;&nbsp;<em>Unsupervised matrix decomposition methods (pLSA)</em>
        <LI> \ref Optimization "Optimization and Regression"
             <BR>&nbsp;&nbsp;&nbsp;<em>ordinary and non-negative least squares, ridge regression, least angle regression (LARS and LASSO)</em>
    </UL>

*/

/** \page PixelTypes Pixel Types

    <DL>
    <DT>
    <b>Scalar types</b>
    <DD>
        <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref FixedSizeInt
        <LI> \ref vigra::Rational
        <LI> \ref vigra::FixedPoint
        <LI> \ref vigra::FixedPoint16
        </UL>
        <p>
    <DT>
    <b>RGB colors and related functionality</b>
    <DD>
        <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref vigra::RGBValue
        <LI> \ref RGBValueTraits
        <LI> \ref RGBValueOperators
        <LI> \ref RGBValueAccessors
        </UL>
        <p>
    <DT>
    <b>Fixed-size vectors and related functionality</b>
    <DD>
        <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref vigra::TinyVector
        <LI> \ref vigra::TinyVectorView
        <LI> \ref TinyVectorTraits
        <LI> \ref TinyVectorOperators
        </UL>
        <p>
    <DT>
    <b>Complex Numbers</b>
    <DD>
        <UL style="list-style-image:url(documents/bullet.gif)">
        <LI> \ref vigra::FFTWComplex
        <LI> \ref FFTWComplexTraits
        <LI> \ref FFTWComplexOperators
        <LI> \ref FFTWComplexAccessors
        </UL>
    </DL>
*/

/** \page ImageDataStructures Image Data Structures and Iterators

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref vigra::BasicImage
         <BR>&nbsp;&nbsp;&nbsp;<em>Fundamental class template for images </em>
    <LI> \ref vigra::BasicImageView
         <BR>&nbsp;&nbsp;&nbsp;<em>Class template for images that use external memory</em>
    <LI> \ref StandardImageTypes
         <BR>&nbsp;&nbsp;&nbsp;<em>The most common instantiations of \ref vigra::BasicImage</em>
    <LI> \ref vigra::SplineImageView
         <BR>&nbsp;&nbsp;&nbsp;<em>Wrap a discrete image as a continous function</em>
    <LI> \ref VigraImpex
         <BR>&nbsp;&nbsp;&nbsp;<em>Image import/export</em>
    <LI> \ref ImageContainers
         <BR>&nbsp;&nbsp;&nbsp;<em>Classes to manage multiple images (ImageArray..)</em>
    <LI> \ref PixelNeighborhood
         <BR>&nbsp;&nbsp;&nbsp;<em>Easy access to the 4- and 8-neighbors of a pixel</em>
    <LI> \ref ImageIterators
         <BR>&nbsp;&nbsp;&nbsp;<em>Basic image iterator implementations </em>
    <LI> \ref ImageIteratorAdapters
         <BR>&nbsp;&nbsp;&nbsp;<em>Iterate over rows, columns, and other image subsets </em>
    <LI> \ref DataAccessors
         <BR>&nbsp;&nbsp;&nbsp;<em>Basic templates to encapsulate access to the data of an iterator</em>
    <LI> \ref ArgumentObjectFactories
         <BR>&nbsp;&nbsp;&nbsp;<em>Factory functions to create argument objects which simplify long argument lists </em>
    </UL>
*/

/** \page MultiDimensionalArrays Multi-Dimensional Arrays and Iterators

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref vigra::MultiArrayView
         <BR>&nbsp;&nbsp;&nbsp;<em>Interface for multi-dimensional arrays </em>
    <LI> \ref vigra::MultiArray
         <BR>&nbsp;&nbsp;&nbsp;<em>Array class that holds the actual memory</em>
    <LI> \ref MultiMathModule
         <BR>&nbsp;&nbsp;&nbsp;<em>Arithmetic and algebraic expressions for multi-dimensional arrays</em>
    <LI> \ref MultiArrayTags
         <BR>&nbsp;&nbsp;&nbsp;<em>Meta-programming tags to mark array's as strided or unstrided</em>
    <LI> \ref MultiIteratorPage
         <BR>&nbsp;&nbsp;&nbsp;<em>Iterators for multi-dimensional arrays</em>
    <LI> \ref vigra::MultiArrayNavigator
         <BR>&nbsp;&nbsp;&nbsp;<em>Navigator utility for multi-dimensional arrays</em>
    <LI> \ref VolumeImpex
         <BR>&nbsp;&nbsp;&nbsp;<em>Import/export of volume data.</em>
    <LI> \ref MultiPointoperators
         <BR>&nbsp;&nbsp;&nbsp;<em>Point operators on multi-dimensional arrays</em>
    <LI> \ref MultiArrayConvolutionFilters
         <BR>&nbsp;&nbsp;&nbsp;<em>Convolution filters in arbitrary dimensions</em>
    <LI> \ref FourierTransform
         <BR>&nbsp;&nbsp;&nbsp;<em>Fast Fourier transform for arrays of arbitrary dimension</em>
    <LI> \ref resizeMultiArraySplineInterpolation()
         <BR>&nbsp;&nbsp;&nbsp;<em>Interpolation of arrays in arbitrary dimensions</em>
    <LI> \ref MultiArrayDistanceTransform
         <BR>&nbsp;&nbsp;&nbsp;<em>Separable distance transform for arrays of arbitrary dimension</em>
    <LI> \ref MultiArrayMorphology
         <BR>&nbsp;&nbsp;&nbsp;<em>Separable morphology with parabola structuring function for arrays of arbitrary dimension</em>
    <LI> \ref labelVolume(), \ref seededRegionGrowing3D(), \ref watersheds3D(), \ref localMinima3D(), \ref localMaxima3D(),
         <BR>&nbsp;&nbsp;&nbsp;<em>3-dimensional image (i.e. volume) analysis</em>
    <LI> \ref VoxelNeighborhood
         <BR>&nbsp;&nbsp;&nbsp;<em>Easy access to the 6- and 26-neighbors of a voxel</em>
    <LI> \ref vigra::NumpyArray and \ref vigra::NumpyAnyArray
         <BR>&nbsp;&nbsp;&nbsp;<em>Provide the VIGRA multi array interface Python arrays</em>
    </UL>
*/

/** \page ImportExport Image Import and Export

    Conversion from and to other image data types

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref VigraImpex
         <BR>&nbsp;&nbsp;&nbsp;<em>VIGRA's highlevel image import/export interface</em>
    <LI> \ref VolumeImpex
         <BR>&nbsp;&nbsp;&nbsp;<em>Import/export interface for volume data</em>
    <LI> \ref VigraHDF5Impex
         <BR>&nbsp;&nbsp;&nbsp;<em>Import/export of images and arrays in
         <a href="http://www.hdfgroup.org/HDF5/">HDF5</a> format</em>
    <LI> \ref TIFFImpex
         <BR>&nbsp;&nbsp;&nbsp;<em>image import/export interface if you want to call libtiff functions directly</em>
    </UL>

    There are two fundamentally different approaches to interfacing between VIGRA and the rest of the world.

    <b>If you already have an image data type in your system:</b>

    Then I recommend using VIGRA's algorithms directly on top of your data type.
    To do this, you simply wrap your data in an \ref vigra::ImageIterator and/or
    \ref vigra::MultiArrayView (depending on the functions you want to call). If
    your data have some exotic properties, that prevent this solution from working,
    you can still implement your own versions or subclasses of the interface classe,
    which isn't very difficult.

    Alternatively, you may use the data structures provided within VIGRA
    and convert your data type into one of them. Take a look at \ref tiffToScalarImage() and
    \ref createScalarTiffImage() to see how this might be done.

    <b>If you don't have an image data type in your system:</b>

    Use the data structures provided within VIGRA and use one of the import/export facilities above.

*/

/** \page ImageProcessing Image Processing

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref PointOperators
         <BR>&nbsp;&nbsp;&nbsp;<em>algorithms and functors for image arithmetic, inspection, transformations etc.</em>
    <LI> \ref MultiMathModule
         <BR>&nbsp;&nbsp;&nbsp;<em>Arithmetic and algebraic expressions for multi-dimensional arrays</em>
    <LI> \ref FunctorExpressions
         <BR>&nbsp;&nbsp;&nbsp;<em>Expression templates for automated functor creation</em>
    <LI> \ref GeometricTransformations "Resize and Other Geometric Image Transformations"
         <BR>&nbsp;&nbsp;&nbsp;<em>resize and interpolation, image mirroring, rotation, arbitrary affine transformations</em>
    <LI> \ref vigra::SplineImageView
         <BR>&nbsp;&nbsp;&nbsp;<em>Wrap a discrete image as a continous function</em>
    <LI> \ref Convolution
         <BR>&nbsp;&nbsp;&nbsp;<em>1D, 2D, and nD filters, including separable and recursive convolution</em>
    <LI> \ref NonLinearDiffusion
         <BR>&nbsp;&nbsp;&nbsp;<em>Edge-preserving smoothing and denoising</em>
    <LI> \ref Correlation
         <BR>&nbsp;&nbsp;&nbsp;<em>Fast and slow algorithms to estimate the correlation between images</em>
    <LI> \ref Registration
         <BR>&nbsp;&nbsp;&nbsp;<em>Transforming different images into a common coordinate system</em>
    <LI> \ref FourierTransform
         <BR>&nbsp;&nbsp;&nbsp;<em>forward and backward FFT, cosine transform, and related
                 functionality</em>
    <LI> \ref GaborFilter
         <BR>&nbsp;&nbsp;&nbsp;<em>Gabor filter generation and related
                 functionality</em>
    <LI> \ref TensorImaging
         <BR>&nbsp;&nbsp;&nbsp;<em>Tensor image processing</em>
    <LI> \ref Morphology
         <BR>&nbsp;&nbsp;&nbsp;<em>erosion, dilation, and median with disc structuring functions</em>
    <LI> \ref NoiseNormalization
         <BR>&nbsp;&nbsp;&nbsp;<em>transform intensity-dependent noise into additive Gaussian noise</em>
    <LI> \ref SlantedEdgeMTF
         <BR>&nbsp;&nbsp;&nbsp;<em>determine the magnitude transfer function (MTF) of a camera using the slanted edge method</em>
    </UL>
*/

/** \page ImageAnalysis Image Analysis

    <UL style="list-style-image:url(documents/bullet.gif)">
    <LI> \ref InspectAlgo and \ref InspectFunctor
         <BR>&nbsp;&nbsp;&nbsp;<em>Statistical analysis of images and regions</em>
     <LI> \ref FeatureAccumulators
         <BR>&nbsp;&nbsp;&nbsp;<em>Computation of global and per-region statistics of multi arrays via accumulators framework</em>
   <LI> \ref vigra::Threshold
         <BR>&nbsp;&nbsp;&nbsp;<em>Good old thresholding</em>
    <LI> \ref Labeling
         <BR>&nbsp;&nbsp;&nbsp;<em>Connected components labeling using 4 or 8 connectivity </em>
    <LI> \ref LocalMinMax
         <BR>&nbsp;&nbsp;&nbsp;<em>Including extremal plateaus larger than 1 pixel</em>
    <LI> \ref DistanceTransform
         <BR>&nbsp;&nbsp;&nbsp;<em>Distance transform using Euclidean, Manhattan, or chessboard metrics </em>
    <LI> \ref TensorImaging
         <BR>&nbsp;&nbsp;&nbsp;<em>Tensor image analysis</em>
    <LI> \ref EdgeDetection
         <BR>&nbsp;&nbsp;&nbsp;<em>Edge detectors based on first and second derivatives</em>
    <LI> \ref CornerDetection
         <BR>&nbsp;&nbsp;&nbsp;<em>Measure the 'cornerness' at each pixel </em>
    <LI> \ref SymmetryDetection
         <BR>&nbsp;&nbsp;&nbsp;<em>Measure the local symmetry at each pixel </em>
    <LI> \ref SeededRegionGrowing
         <BR>&nbsp;&nbsp;&nbsp;<em>Region growing, watersheds, and voronoi tesselation</em>
    </UL>
*/

/** \page AlgebraicConcepts Algebraic Concepts

The algebraic concepts describe requirements for algebraic types, that is
for types that support arithmetic operations. The built-in types are concepts
of \ref AlgebraicField and \ref DivisionAlgebra.

\anchor AlgebraicRing

<h3>Algebraic Ring</h3>

<ul>
    <li>A model of Algebraic Ring implements <tt>Assignable</TT>, <tt>Default Constructible</TT>,
        <tt>Equality Comparable</TT> and <tt>Strict Weakly Comparable</TT>
        as defined in the C++ standard (cf. the
        <a href=\stl_link>Standard Template Library documentation</a>).

    <li>A model of Algebraic Ring implements addition, subtraction and unary negation. The associated
    \link NumericTraits NumericTraits \endlink define a 'zero' element, the type of the
    result of addition and subtraction, and a type conversion function.
    Addition must be commutative.

    \code
    ModelOfAlgebraicRing a, b;
    NumericTraits<ModelOfAlgebraicRing>::Promote c;

    ModelOfAlgebraicRing zero = NumericTraits<ModelOfAlgebraicRing>::zero();

    b += a;
    b -= a;
    b = -a;
    c = a + b;
    c = a - b;
    c = a;
    a = NumericTraits<ModelOfAlgebraicRing>::fromPromote(c);

    assert(a + zero == a);
    assert(a + b == b + a);
    assert(a - b == a + (-b));
    \endcode

    <li>If mixed-type addition and subtraction are supported,
    \link PromoteTraits PromoteTraits \endlink define the result type:

    \code
    ModelOfAlgebraicRing1 a;
    ModelOfAlgebraicRing2 b;

    PromoteTraits<ModelOfAlgebraicRing1, ModelOfAlgebraicRing2>::Promote c;

    c = a + b;
    \endcode

    <li>A model of Algebraic Ring implements multiplication. The associated
    \link NumericTraits NumericTraits \endlink define a 'one' element, the type of the
    result of multiplication, and a type conversion function.

    \code
    ModelOfAlgebraicRing a, b;
    NumericTraits<ModelOfAlgebraicRing>::RealPromote c;

    ModelOfAlgebraicRing one = NumericTraits<ModelOfAlgebraicRing>::one();

    b *= a;
    c = a * b;
    c = a;
    a = NumericTraits<ModelOfAlgebraicRing>::fromRealPromote(c);

    assert(a * one == a);
    \endcode
</ul>

\anchor AlgebraicField
<h3>Algebraic Field</h3>

<ul>
    <li>A model of Algebraic Field implements \ref AlgebraicRing as defined above.

    <li>A model of Algebraic Field implements division. Division is undefined if
    and only if the right operand is 'zero'.

    \code
    ModelOfAlgebraicField a, b;
    typename NumericTraits<ModelOfAlgebraicField>::RealPromote c;

    ModelOfAlgebraicField zero = NumericTraits<ModelOfAlgebraicField>::zero();

    if(a != zero) b /= a;
    if(a != zero) c = b / a;
    \endcode

</ul>


\anchor LinearSpace

<h3>Linear Space</h3>

<ul>
    <li>A model of Linear Space implements <tt>Assignable</TT>, <tt>Default Constructible</TT>
        and <tt>Equality Comparable</TT>
        as defined in the C++ standard (cf. the
        <a href=\stl_link>Standard Template Library documentation</a>).

    <li>A model of Algebraic Ring implements addition, subtraction and unary negation. The associated
    \link NumericTraits NumericTraits \endlink define a 'zero' element, the type of the
    result of addition and subtraction, and a type conversion function.
    Addition must be commutative. (This part of the requirements is identical to
    \ref AlgebraicRing above.)

    \code
    ModelOfAlgebraicRing a, b;
    NumericTraits<ModelOfAlgebraicRing>::Promote c;

    ModelOfAlgebraicRing zero = NumericTraits<ModelOfAlgebraicRing>::zero();

    b += a;
    b -= a;
    b = -a;
    c = a + b;
    c = a - b;
    c = a;
    a = NumericTraits<ModelOfAlgebraicRing>::fromPromote(c);

    assert(a + zero == a);
    assert(a + b == b + a);
    assert(a - b == a + (-b));
    \endcode

    <li>If mixed-type addition and subtraction are supported,
    \link PromoteTraits PromoteTraits \endlink define the result type:

    \code
    ModelOfAlgebraicRing1 a;
    ModelOfAlgebraicRing2 b;

    PromoteTraits<ModelOfAlgebraicRing1, ModelOfAlgebraicRing2>::Promote c;

    c = a + b;
    \endcode

    <li>A model of Algebraic Ring implements multiplication and division with 'double'.
      (Note that the outer product could be defined with an arbitrary model of
      \ref AlgebraicField. For simplicity, VIGRA restricts this to only 'double'.)
      The associated \link NumericTraits NumericTraits \endlink define the type of the
      results, and a type conversion function.

    \code
    ModelOfAlgebraicRing a;
    double f;
    NumericTraits<ModelOfAlgebraicRing>::RealPromote c;


    a *= f;
    c = a * f;
    c = f * a;

    if(f != 0.0) a /= f;
    if(f != 0.0) c = a / f;

    c = a;
    a = NumericTraits<ModelOfAlgebraicRing>::fromRealPromote(c);
    \endcode
</ul>

\anchor LinearAlgebraConcept
<h3>Linear Algebra</h3>

<ul>
    <li>A model of Linear Algebra implements \ref LinearSpace and
        \ref AlgebraicRing as defined above.

</ul>

\anchor DivisionAlgebra
<h3>Division Algebra</h3>

<ul>
    <li>A model of Division Algebra implements \ref LinearSpace and
        \ref AlgebraicField as defined above.

</ul>

*/

/** \page VigraMatlab Vigra Matlab

    Matlab bindings (mex-files) for the most important VIGRA functions are located
    <tt>[vigra_src_dir]/src/matlab</tt>. To compile and install them, start Matlab,
    go into that directory and call the function buildVigraExtensions:

    \code
    buildVigraExtensions('install_path')
    \endcode

    If the compilation fails because includes or libraries are not found, you can
    provide additional search directories like this:

    \code
    buildVigraExtensions('install_path', 'all', struct('flags', '-I/path/to/includes -L/path/to/libs'))
    \endcode

    Additional compiler flags are specified in the same way. Suggestions about typical settings on Linux and
    Windows can be found in the individual .cpp files. For example, on Windows we usually need

    \code
    buildVigraExtensions('install_path', 'all', ...
     struct('flags', '-I[HDF5PATH]/include -L[HDF5PATH]/lib -lhdf5dll -lhdf5_hldll -D_HDF5USEDLL_ -DHDF5CPP_USEDLL'))
    \endcode

    After successful compilation, you can obtain a list of the available VIGRA functions by calling

    \code
    help vigraIndex
    \endcode

    In the same way, you get documentation for the individual functions. More
    information about the glue code behind the bindings is available in
    <a href="http://hci.iwr.uni-heidelberg.de/vigra/documents/tutorial_reference.pdf">this report</a>.

*/

/** \namespace vigra
    all VIGRA functionality is located in namespace vigra
*/


#if 0
//@{


//Include: ../include/vigra/morphological_appropriate_scale.hxx
//Include: ../include/vigra/feature_adjacency_graph.hxx

//@}

#endif