File: graph_agglomerative_clustering.py

package info (click to toggle)
libvigraimpex 1.11.1%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 50,356 kB
  • sloc: cpp: 57,785; python: 8,603; ansic: 1,798; makefile: 97; javascript: 65; sh: 50
file content (70 lines) | stat: -rw-r--r-- 2,298 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import vigra
from vigra import graphs
from vigra import numpy
import pylab

# parameter
filepath = '12003.jpg'  # input image path
sigmaGradMag = 5.0      # sigma Gaussian gradient
superpixelDiameter = 10 # super-pixel size
slicWeight = 10.0       # SLIC color - spatial weight
beta = 0.5              # node vs edge weight
nodeNumStop = 50        # desired num. nodes in result


# load image and convert to LAB
img = vigra.impex.readImage(filepath)

# get super-pixels with slic on LAB image
imgLab = vigra.colors.transform_RGB2Lab(img)
labels, nseg = vigra.analysis.slicSuperpixels(imgLab, slicWeight,
                                              superpixelDiameter)
labels = vigra.analysis.labelImage(labels)

# compute gradient on interpolated image
imgLabBig = vigra.resize(imgLab, [imgLab.shape[0]*2-1, imgLab.shape[1]*2-1])
gradMag = vigra.filters.gaussianGradientMagnitude(imgLabBig, sigmaGradMag)

# get 2D grid graph and  edgeMap for grid graph
# from gradMag of interpolated image
gridGraph = graphs.gridGraph(img.shape[0:2])
gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGraph,
                                                                  gradMag)
# get region adjacency graph from super-pixel labels
rag = graphs.regionAdjacencyGraph(gridGraph, labels)

# accumulate edge weights from gradient magnitude
edgeWeights = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)

# accumulate node features from grid graph node map
# which is just a plain image (with channels)
nodeFeatures = rag.accumulateNodeFeatures(imgLab)

# do agglomerativeClustering
labels = graphs.agglomerativeClustering(graph=rag, edgeWeights=edgeWeights,
                                        beta=beta, nodeFeatures=nodeFeatures,
                                        nodeNumStop=nodeNumStop,wardness=0.8)

# show result
f = pylab.figure()
ax1 = f.add_subplot(2, 2, 1)
vigra.imshow(gradMag,show=False)
ax1.set_title("Input Image")
pylab.axis('off')

ax2 = f.add_subplot(2, 2, 2)
rag.show(img)
ax2.set_title("Over-Segmentation")
pylab.axis('off')

ax3 = f.add_subplot(2, 2, 3)
rag.show(img, labels)
ax3.set_title("Result-Segmentation")
pylab.axis('off')

ax4 = f.add_subplot(2, 2, 4)
rag.showNested(img, labels)
ax4.set_title("Result-Segmentation")
pylab.axis('off')

vigra.show()