1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
import vigra
from vigra import graphs
from vigra import numpy
import pylab
# parameter
filepath = '12003.jpg' # input image path
sigmaGradMag = 5.0 # sigma Gaussian gradient
superpixelDiameter = 10 # super-pixel size
slicWeight = 10.0 # SLIC color - spatial weight
beta = 0.5 # node vs edge weight
nodeNumStop = 50 # desired num. nodes in result
# load image and convert to LAB
img = vigra.impex.readImage(filepath)
# get super-pixels with slic on LAB image
imgLab = vigra.colors.transform_RGB2Lab(img)
labels, nseg = vigra.analysis.slicSuperpixels(imgLab, slicWeight,
superpixelDiameter)
labels = vigra.analysis.labelImage(labels)
# compute gradient on interpolated image
imgLabBig = vigra.resize(imgLab, [imgLab.shape[0]*2-1, imgLab.shape[1]*2-1])
gradMag = vigra.filters.gaussianGradientMagnitude(imgLabBig, sigmaGradMag)
# get 2D grid graph and edgeMap for grid graph
# from gradMag of interpolated image
gridGraph = graphs.gridGraph(img.shape[0:2])
gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGraph,
gradMag)
# get region adjacency graph from super-pixel labels
rag = graphs.regionAdjacencyGraph(gridGraph, labels)
# accumulate edge weights from gradient magnitude
edgeWeights = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)
# accumulate node features from grid graph node map
# which is just a plain image (with channels)
nodeFeatures = rag.accumulateNodeFeatures(imgLab)
# do agglomerativeClustering
labels = graphs.agglomerativeClustering(graph=rag, edgeWeights=edgeWeights,
beta=beta, nodeFeatures=nodeFeatures,
nodeNumStop=nodeNumStop,wardness=0.8)
# show result
f = pylab.figure()
ax1 = f.add_subplot(2, 2, 1)
vigra.imshow(gradMag,show=False)
ax1.set_title("Input Image")
pylab.axis('off')
ax2 = f.add_subplot(2, 2, 2)
rag.show(img)
ax2.set_title("Over-Segmentation")
pylab.axis('off')
ax3 = f.add_subplot(2, 2, 3)
rag.show(img, labels)
ax3.set_title("Result-Segmentation")
pylab.axis('off')
ax4 = f.add_subplot(2, 2, 4)
rag.showNested(img, labels)
ax4.set_title("Result-Segmentation")
pylab.axis('off')
vigra.show()
|