1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
import vigra
import vigra.graphs as graphs
import pylab
# parameter:
filepath = '100075.jpg' # input image path
sigmaGradMag = 3.0 # sigma Gaussian gradient
superpixelDiameter = 10 # super-pixel size
slicWeight = 10.0 # SLIC color - spatial weight
# load image and convert to LAB
img = vigra.impex.readImage(filepath)
# get super-pixels with slic on LAB image
imgLab = vigra.colors.transform_RGB2Lab(img)
labels, nseg = vigra.analysis.slicSuperpixels(imgLab, slicWeight,
superpixelDiameter)
labels = vigra.analysis.labelImage(labels)
# compute gradient
imgLabBig = vigra.resize(imgLab, [imgLab.shape[0]*2-1, imgLab.shape[1]*2-1])
gradMag = vigra.filters.gaussianGradientMagnitude(imgLab, sigmaGradMag)
gradMagBig = vigra.filters.gaussianGradientMagnitude(imgLabBig, sigmaGradMag*2.0)
vigra.imshow(gradMagBig)
vigra.show()
# get 2D grid graph and edgeMap for grid graph
# from gradMag of interpolated image
gridGraph = graphs.gridGraph(img.shape[0:2])
gridGraphEdgeIndicator = graphs.edgeFeaturesFromInterpolatedImage(gridGraph,
gradMagBig)
# get region adjacency graph from super-pixel labels
rag = graphs.regionAdjacencyGraph(gridGraph, labels)
# accumulate edge and ndie weights from gradient magnitude
ragEdgeWeights = rag.accumulateEdgeFeatures(gridGraphEdgeIndicator)
ragNodeWeights = rag.accumulateNodeFeatures(gradMag)
# generate seeds
seeds = graphs.nodeWeightedWatershedsSeeds(rag, ragNodeWeights)
# node weighted watersheds
labelsNodeWeighted = graphs.nodeWeightedWatersheds(rag, ragNodeWeights, seeds)
# edge weighted watersheds
labelsEdgeWeighted = graphs.edgeWeightedWatersheds(rag, ragEdgeWeights, seeds)
f = pylab.figure()
ax0 = f.add_subplot(1, 2, 1)
rag.showNested(img, labelsNodeWeighted)
ax0.set_title("node weighted")
ax1 = f.add_subplot(1, 2, 2)
rag.showNested(img, labelsEdgeWeighted)
ax1.set_title("edge weighted")
pylab.show()
|