File: arraytypes.py

package info (click to toggle)
libvigraimpex 1.12.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 50,016 kB
  • sloc: cpp: 57,841; python: 8,568; ansic: 1,798; sh: 108; makefile: 82; javascript: 65
file content (2149 lines) | stat: -rw-r--r-- 87,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
#######################################################################
#
#         Copyright 2009-2011 by Ullrich Koethe
#
#    This file is part of the VIGRA computer vision library.
#    The VIGRA Website is
#        http://hci.iwr.uni-heidelberg.de/vigra/
#    Please direct questions, bug reports, and contributions to
#        ullrich.koethe@iwr.uni-heidelberg.de    or
#        vigra@informatik.uni-hamburg.de
#
#    Permission is hereby granted, free of charge, to any person
#    obtaining a copy of this software and associated documentation
#    files (the "Software"), to deal in the Software without
#    restriction, including without limitation the rights to use,
#    copy, modify, merge, publish, distribute, sublicense, and/or
#    sell copies of the Software, and to permit persons to whom the
#    Software is furnished to do so, subject to the following
#    conditions:
#
#    The above copyright notice and this permission notice shall be
#    included in all copies or substantial portions of the
#    Software.
#
#    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND
#    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
#    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
#    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
#    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
#    OTHER DEALINGS IN THE SOFTWARE.
#
#######################################################################
from functools import reduce

import sys
import copy
import numpy
from . import ufunc
import vigra.vigranumpycore as vigranumpycore

from vigra.vigranumpycore import AxisType, AxisInfo, AxisTags

from collections.abc import Iterable


def _preserve_doc(f):
    npy_doc = eval('numpy.ndarray.%s.__doc__' % f.__name__)
    f.__doc__ =  ("" if npy_doc is None else npy_doc) + \
                 ("" if f.__doc__ is None else "\n" + f.__doc__)
    return f

# a decorator to finalize the return value of a
# dimension-reducing function (e.g. array.max())
def _finalize_reduce_result(f):
    def new_f(self, axis=None, out=None):
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = f(self, axis, out)
        if out is None:
            if axis is not None:
                res.axistags = self._copy_axistags()
                del res.axistags[axis]
            else:
                # this 'else' is necessary because numpy 1.6.0 gives
                #     type(res) == type(self)
                # instead of the desired
                #     type(res) == self.dtype
                # when res is scalar and self is a subclass of ndarray
                # (this is probably a bug in numpy, since it works correctly
                #  when self is a plain ndarray)
                res = res.dtype.type(res)
        return res
    new_f.__doc__ = f.__doc__
    return new_f

def _numpyarray_overloaded_function(f, self, axis=None, dtype=None, out=None):
    if type(axis) == str:
        axis = self.axistags.index(axis)
    if axis is None:
        return f(self.transposeToOrder('C').view(numpy.ndarray), dtype=dtype, out=out)
    else:
        res = f(self.view(numpy.ndarray), axis, dtype, out)
        if out is None:
            res = res.view(VigraArray)
            res.axistags = self._copy_axistags()
            del res.axistags[axis]
        return res

class classproperty:
    def __get__(self, instance, cls):
            if self.__instance_method is not None and instance is not None:
                return self.__instance_method(instance)
            else:
                return self.__class_method(cls)
    def __init__(self, class_method, instance_method=None):
            self.__class_method = class_method
            self.__instance_method = instance_method

def newaxis(axisinfo=AxisInfo()):
    '''
    Create a new singleton axis via the indexing operator. This works similar to
    `numpy.newaxis`, but allows to provide an AxisInfo object for the new axis.
    For example::

        >>> s = vigra.ScalarImage((width, height))
        >>> s.axistags  # no channel axis
        x y
        >>> t = s[..., numpy.newaxis]
        >>> t.axistags  # with unknown axis type
        x y ?
        >>> t = s[..., vigra.newaxis(vigra.AxisInfo.c)]
        >>> t.axistags  # with channel axis
        x y c
    '''
    if isinstance(axisinfo, str):
        return eval('AxisInfo.'+axisinfo)
    else:
        return axisinfo

def makeAxistags(spec, order=None, noChannels=None):
    '''
    Create a new :class:`~vigra.AxisTags` object from the specification ``spec``.
    ``spec`` can be one of the following:

    * an instance of the ``AxisTags`` class. In this case, the function creates
      a copy of ``spec``. If ``order`` is given, the resulting axistags are
      transposed to the desired order ('C', 'F', or 'V'). If ``noChannels=True``,
      the channel axis (if any) is dropped from the specification.

    * a string or tuple of axis keys (e.g. ``'xyc'`` or ``('x', 'y', 'c')`` respectively)
      or a tuple of :class:`~vigra.AxisInfo` objects (e.g.
      ``(AxisInfo.x, AxisInfo.y, AxisInfo.c)``). The function then constructs a
      new ``AxisTags`` object from this specification. If ``order`` is given,
      the resulting axistags are transposed to the desired order ('C', 'F', or 'V').
      If ``noChannels=True``, the channel axis (if any) is dropped from the specification.

    * an integer signifying the desired number of axes. In this case, the call (including
      optional arguments ``order`` and ``noChannels``) is forwarded to the function
      :meth:`~vigra.VigraArray.defaultAxistags`, whose output is returned.
    '''
    if isinstance(spec, int):
        return VigraArray.defaultAxistags(spec, order=order, noChannels=noChannels)

    if isinstance(spec, AxisTags):
        res = copy.copy(spec)
    else:
        tags = [k if isinstance(k, AxisInfo) else eval('AxisInfo.'+k) for k in spec]
        res = AxisTags(*tuple(tags))
    if order:
        res.transpose(res.permutationToOrder(order))
    if noChannels:
        res.dropChannelAxis()
    return res

def taggedView(array, axistags='', force=False, order=None, noChannels=False):
    '''
    Create a view to the given array with type :class:`~vigra.VigraArray` and
    desired axistags.

    You can either explicitly provide axistags to be imposed on the array
    (parameter ``axistags``), or a general description for the desired axis
    ordering (parameters ``order`` and ``noChannels``). It is an error to
    specify axistags and order simultaneously. In addition, the effect of
    ``taggedView()`` depends on whether ``array`` already has axistags or not.

    1. If ``array`` has no axistags or ``force=True`` (i.e. existing axistags
       shall be ignored) and neither the ``axistags`` nor the ``order`` parameters
       are given, the function acts as if ``order="C"`` was specified (case 2 below).

    2. If ``array`` has no axistags or ``force=True`` (i.e. existing axistags
       shall be ignored) and the ``order`` parameter is given, the function
       constructs appropriate axistags via :meth:`~vigra.VigraArray.defaultAxistags`::

       >>> view = array.view(VigraArray)
       >>> view.axistags = VigraArray.defaultAxistags(view.ndim, order, noChannels)

    3. If ``array`` has no axistags (or ``force=True``) and the ``axistags`` parameter
       is given, the function transforms this specification into an object of type
       :class:`~vigra.AxisTags` and attaches the result to the view::

       >>> view = array.view(VigraArray)
       >>> view.axistags = makeAxistags(axistags)

    4. If ``array`` has axistags (and ``force=False``) and the ``order`` parameter is
       given, the function transposes the array into the desired order::

       >>> view = array.transposeToOrder(order)
       >>> if noChannels:
       ...     view = view.dropChannelAxis()

    5. If ``array`` has axistags (and ``force=False``) and the ``axistags`` parameter
       is given, the function calls :meth:`~vigra.VigraArray.withAxes` to transforms
       the present axistags into the desired ones::

       >>> view = array.withAxes(axistags)

    The function raises a RuntimeError when the axistag specification is incompatible
    with the array.
    '''
    if axistags and order:
        raise RuntimeError("vigra.taggedView(): you cannot specify 'axistags' and 'order' at the same time.")
    if hasattr(array, 'axistags') and not force:
        if not axistags:
            array = array.transposeToOrder(order)
            if noChannels:
                array = array.dropChannelAxis()
        else:
            array = array.withAxes(axistags)
    else:
        if not axistags:
            if not order:
                order = 'C'
            axistags = VigraArray.defaultAxistags(array.ndim, order, noChannels)
        else:
            axistags = makeAxistags(axistags)
        if array.ndim != len(axistags):
            raise RuntimeError('vigra.taggedView(): array.ndim must match len(axistags).')
        array = array.view(VigraArray)
        array.axistags = axistags
    return array

def dropChannelAxis(array):
    '''
    Return the view created by ``array.``:meth:`~vigra.VigraArray.dropChannelAxis` if
    the given array supports that function, or return ``array`` unchanged otherwise.
    '''
    try:
        return array.dropChannelAxis()
    except:
        return array

# FIXME: This is a workaround for the disabled C++ function for the same purpose.
#        Enable the C++ version when boost 1.41 is available on all relevant platforms.
def _AxisTags_fromJSON(json_rep):
    '''
        Construct a new AxisTags object from the given JSON representation.
        This is mainly used to reconstruct arrays from HDF5 datasets with
        a suitable axistags attribute (see :func:`~vigra.impex.readHDF5`).
    '''
    tag_dict = eval(json_rep)
    tag_list = []
    for tags in tag_dict['axes']:
        tags['typeFlags'] = AxisType(tags['typeFlags'])
        tag_list.append(AxisInfo(**tags))
    return AxisTags(tag_list)

def _AxisTags__reduce__(self):
    '''
        enable pickling of AxisTags
    '''
    return _AxisTags_fromJSON, (self.toJSON(),)

AxisTags.__reduce__ = _AxisTags__reduce__
AxisTags.fromJSON = staticmethod(_AxisTags_fromJSON)
AxisTags.fromJSON.__doc__ = _AxisTags_fromJSON.__doc__

# How to construct a VigraArray
#
# case 1: from shape and order or axistags
# conventions: - shape has explicit channel axis
#              - 'A' order defaults to 'V' order
#              - order implies axistags and vice versa, you cannot provide both
# * look up the array type. If it is a plain ndarray, skip axistags
# * construct array according to order, optionally init with a constant
# * create and assign normalized axistags, if not explicitly given
# * optionally remove a singleton channel dimension (while we know where it is)
# * permute the array by the inverse normalization
# * assign axistags, if explicitly given (check compatibility)
#
# case 2: from another array
# * if taget order is 'A' or source and target order are equal, copy as is (including axistags)
# * otherwise, normalize the shape according to target order and
#   remember the normalizing permutation
# * construct array in normalized order
# * permute the array by the inverse normalization
# * copy original data and axistags

_constructArrayFromAxistags = vigranumpycore.constructArrayFromAxistags

def _constructArrayFromOrder(cls, shape, dtype, order, init):
    axistags = VigraArray.defaultAxistags(len(shape), order)
    if hasattr(dtype, "type"):
        dtype = dtype.type
    return _constructArrayFromAxistags(cls, shape, dtype, axistags, init)

def _constructArrayFromArray(cls, obj, dtype, order, init, axistags):
    if order is None:
        order = 'A'
    if order == 'A':
        # we cannot use ndarray.copy('A') here, because this only preserves 'C' and 'F'
        # order, whereas any other order is silently transformed into 'C'

        # we must also make sure that a singleton channel index has the smallest stride
        # (otherwise, strides in the copy may not exactly match those in obj)
        strides = list(obj.strides)
        try:
            channelIndex = obj.channelIndex
            if channelIndex < obj.ndim and obj.shape[channelIndex] == 1:
                strides[channelIndex] = 0
        except:
            pass
        permutation = list(numpy.array(strides).argsort())
        norm_shape = tuple(numpy.array(obj.shape)[permutation])
        inverse_permutation = list(numpy.array(permutation).argsort())
        array = numpy.ndarray.__new__(cls, norm_shape, dtype, order='F')
        array = array.transpose(inverse_permutation)
    else:
        array = _constructArrayFromOrder(cls, obj.shape, dtype, order, False)

    if init:
        array[...] = obj
    if cls is not numpy.ndarray:
        if axistags is not None:
            array.axistags = axistags
        elif hasattr(array, 'axistags'):
            del array.axistags
    return array

def _constructArrayFromPickle(_arraypickle, _permutation, _axistags):
    reconstructionFunction = _arraypickle[0]
    reconstructionArgs = _arraypickle[1]
    array = reconstructionFunction(*reconstructionArgs)
    array.__setstate__(_arraypickle[2])
    array = array.transpose(_permutation)
    array.axistags = AxisTags.fromJSON(_axistags)
    return array

def _constructArrayFromZMQSocket(socket, flags=0, copy=True, track=False):
    metadata = socket.recv_json(flags=flags)
    axistags = AxisTags.fromJSON(socket.recv(flags=flags))
    data = memoryview(socket.recv(flags=flags, copy=copy, track=track))
    array = numpy.frombuffer(data, dtype=metadata['dtype']).reshape(metadata['shape'])
    array = taggedView(array.transpose(metadata['permutation']), axistags)
    return array

##################################################################

class VigraArray(numpy.ndarray):
    '''
    This class extends numpy.ndarray with the concept of **axistags**
    which encode the semantics of the array's axes. VigraArray overrides all
    numpy.ndarray methods in order to handle axistags in a sensible way.
    In particular, operations acting on two arrays simultaneously (e.g.
    addition) will first transpose the arguments such that their axis
    ordering matches.

    Constructor:

    .. method:: VigraArray(obj, dtype=numpy.float32, order=None, init=True, value=None, axistags=None)

        :param obj: an array or shape object (see below)
        :param dtype: desired element type
        :param order: desired memory layout (see below)
        :param init: True: initialize the image with zeros; False: do not
                     initialize the image
        :type init: boolean
        :param value: initialize the image with this value (overrides init)
        :type value: convertible to dtype
        :param axistags: the AxisTags object of the new array. The length of
                         axistags must match the array's shape. It axistags=None,
                         obj.axistags is used if it exists. Otherwise, a new
                         axistags object is created by a call to
                         :meth:`~vigra.VigraArray.defaultAxistags`.

        **obj** may be one of the following

        * If obj is a numpy.ndarray or a subtype, a copy of obj with the given
          dtype, order and resulting class VigraArray is created. If obj.axistags
          exists, the new array will have these axistags as well, unless new
          axistags are explicitly passed to the constructor.
        * If obj is a sequence, it is interpreted as a shape.
        * Otherwise, or if shape and axistags are incompatible, an exception
          is raised.

        **order** can be 'C' (C order), 'F' (Fortran order), 'V' (VIGRA
        order), 'A' (any), or None. This parameter controls the order of strides
        and axistags (unless axistags are explicit passed into the constructor).
        See the :ref:`order definitions <array-order-parameter>` for details. If
        'order=None', the order is determined by :attr:`VigraArray.defaultOrder`.
    '''

    ###############################################################
    #                                                             #
    #       a number of helper functions related to axistags      #
    #                                                             #
    ###############################################################

    # a number of helper functions related to axistags

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @classproperty
    def defaultOrder(cls):
        '''
        Get the default axis ordering, currently 'V' (VIGRA order)
        '''
        return 'V'

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def defaultAxistags(tagSpec, order=None, noChannels=False):
        '''
        Get default axistags for the given specification 'tagSpec'. TagSpec can be the
        number of dimensions of the array (``array.ndim``, must be <= 5) or a string
        containing a sequence of axis keys (only the default keys 'x', 'y', 'z', 't',
        and 'c' are currently supported). The 'order' parameter determines the axis
        ordering, see the :ref:`order definitions <array-order-parameter>` for details.
        If 'noChannels' is True, there will be no channel axis. Examples::

            >>> vigra.VigraArray.defaultAxistags(3)
            x y c
            >>> vigra.VigraArray.defaultAxistags(4)
            x y z c
            >>> vigra.VigraArray.defaultAxistags(5)
            x y z t c
            >>> vigra.VigraArray.defaultAxistags(3, order='C')
            y x c
            >>> vigra.VigraArray.defaultAxistags(2, noChannels=True)
            x y
            >>> vigra.VigraArray.defaultAxistags(3, noChannels=True)
            x y z
            >>> vigra.VigraArray.defaultAxistags(4, noChannels=True)
            x y z t
            >>> vigra.VigraArray.defaultAxistags('xty')
            x t y
            >>> vigra.VigraArray.defaultAxistags('xty', order='V')
            x y t
        '''
        if type(tagSpec) == str:
            taglist = [eval('AxisInfo.' + k) for k in tagSpec]
        else:
            start = 1 if noChannels else 0
            end = start + tagSpec
            taglist = [AxisInfo.c, AxisInfo.x, AxisInfo.y, AxisInfo.z, AxisInfo.t][start:end]
            if order is None or order == 'A':
                order = VigraArray.defaultOrder
        tags = AxisTags(taglist)
        if order is not None:
            tags.transpose(tags.permutationToOrder(order))
        return tags

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def _copyValuesImpl(target, source):
        try:
            target = target.squeeze()
            target = target.transposeToNumpyOrder()
        except:
            pass

        try:
            source = source.squeeze()
            source = source.transposeToNumpyOrder()
        except:
            pass

        try:
            compatible = source.axistags.compatible(target.axistags)
        except:
            compatible = True

        if not compatible:
            raise RuntimeError("VigraArray._copyValuesImpl(): incompatible axistags")

        target[...] = source

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def _empty_axistags(ndim):
        '''Create an axistags object with non-informative entries.
           That is, all axisinfo objects are '?'.
        '''
        return AxisTags(ndim)

    def _copy_axistags(self):
        '''Create a copy of 'self.axistags'. If the array doesn't have axistags, _empty_axistags()
           will be returned.
        '''
        return copy.copy(getattr(self, 'axistags', self._empty_axistags(self.ndim)))

    def _transform_axistags(self, index):
        if hasattr(self, 'axistags'):
            return self.axistags.transform(index, self.ndim)
        else:
            return self._empty_axistags(self.ndim)

    def _transpose_axistags(self, *permutation):
        '''Create a copy of self.axistags with transposed entries.
        '''
        if hasattr(self, 'axistags'):
            res = copy.copy(self.axistags)
            try:
                len(permutation[0])
                res.transpose(permutation[0])
            except:
                res.transpose(permutation)
            return res
        else:
            return self._empty_axistags(self.ndim)

    ###############################################################
    #                                                             #
    #                   standard array functions                  #
    #                                                             #
    ###############################################################

    def __new__(cls, obj, dtype=numpy.float32, order=None, init=True, value=None, axistags=None):
        if value is not None:
            init = False
        if isinstance(obj, numpy.ndarray):
            if axistags is None:
                if hasattr(obj, 'axistags'):
                    axistags = copy.copy(obj.axistags)
                else:
                    raise RuntimeError("VigraArray(): axistags must be given when constructing from plain array.")
            elif obj.ndim != len(axistags):
                raise RuntimeError("VigraArray(): axistags have wrong length.")
            if order is None:
                res = _constructArrayFromAxistags(cls, obj.shape, dtype, axistags, init)
                if init:
                    res[...] = obj
            else:
                res = _constructArrayFromArray(cls, obj, dtype, order, init, axistags)
        else:
            if axistags is None:
                if order is None:
                    order = VigraArray.defaultOrder
            elif len(axistags) != len(obj):
                raise RuntimeError("VigraArray(): axistags have wrong length.")
            if order is None:
                res = _constructArrayFromAxistags(cls, obj, dtype, axistags, init)
            else:
                res = _constructArrayFromOrder(cls, obj, dtype, order, init)
                if cls is not numpy.ndarray and axistags is not None:
                    res.axistags = axistags
        if value is not None:
            res.fill(value)
        return res

    __array_priority__ = 15.0

    def __array_finalize__(self, obj):
        if hasattr(obj, 'axistags'):
            self.axistags = obj.axistags

    def __copy__(self, order='A'):
        result = numpy.ndarray.__copy__(self, order)
        result.axistags = result._copy_axistags()
        return result

    @_preserve_doc
    def __deepcopy__(self, memo):
        # numpy.ndarray.__deepcopy__ always creates C-order arrays =>
        #   transpose self accordingly, and transpose back after the copy
        result = numpy.ndarray.__deepcopy__(self.transposeToNumpyOrder(), memo)
        result = result.transpose(self.permutationFromNumpyOrder())
        memo[id(self)] = result
        result.__dict__ = copy.deepcopy(self.__dict__, memo)
        return result

    def __repr__(self):
        return "%s(shape=%s, axistags=%s, dtype=%s, data=\n%s)" % \
          (self.__class__.__name__, str(self.shape), repr(self.axistags), str(self.dtype), str(self))

    def __str__(self):
        try:
            self = self.transposeToVigraOrder().transpose()
        except:
            pass
        return str(self.view(numpy.ndarray))

    def __reduce__(self):
        '''
            Enable pickling of a VigraArray, including axistags. The stride ordering
            will be preserved in the unpickled array. Note that user-defined attributes
            will not be saved and restored.
        '''
        # since the stride ordering is not necessarily preserved by ndarray's pickling
        # functions, we need to normalize stride ordering, and permute to the original
        # ordering upon reconstruction
        pickled = numpy.ndarray.__reduce__(self.transposeToNumpyOrder())
        return _constructArrayFromPickle, (pickled, self.permutationFromNumpyOrder(), self.axistags.toJSON())

    @staticmethod
    def receiveSocket(socket, flags=0, copy=True, track=False):
        '''
        Reconstruct an array that has been transferred via a ZMQ socket by a call to
        VigraArray.sendSocket(). This only works when the 'zmq' module is available.
        The meaning of the arguments is described in zmq.Socket.recv().
        '''
        return _constructArrayFromZMQSocket(socket, flags, copy, track)


    ###############################################################
    #                                                             #
    #                     array I/O and display                   #
    #                                                             #
    ###############################################################

    def writeImage(self, filename, dtype = '', compression = '', mode='w'):
        '''Write an image to a file.
        Consult :func:`vigra.impex.writeImage` for detailed documentation'''
        import vigra.impex

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.writeImage(): array must have 2 non-channel axes.")

        vigra.impex.writeImage(self, filename, dtype, compression, mode)

    def writeSlices(self, filename_base, filename_ext, dtype = '', compression = ''):
        '''Write a volume to a sequence of files.
        Consult :func:`vigra.impex.writeVolume` for detailed documentation.
        '''
        import vigra.impex

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 3:
            raise RuntimeError("VigraArray.writeSlices(): array must have 3 non-channel axes.")

        vigra.impex.writeVolume(self, filename_base, filename_ext, dtype, compression)

    def writeHDF5(self, filenameOurGroup, pathInFile):
        '''Write the array to a HDF5 file.
           This is just a shortcut for :func:`vigra.impex.writeHDF5`
        '''
        import vigra.impex

        vigra.impex.writeHDF5(self, filenameOurGroup, pathInFile)

    def sendSocket(self, socket, flags=0, copy=True, track=False):
        '''
        Send array and metadata over a ZMQ socket. Only works if the 'zmq' module is available.
        The meaning of the arguments is described in zmq.Socket.send().
        '''
        import zmq

        transposed = self.transposeToNumpyOrder().view(numpy.ndarray)
        metadata = dict(
            dtype = str(transposed.dtype),
            shape = transposed.shape,
            permutation = self.permutationFromNumpyOrder()
        )
        socket.send_json(metadata, flags|zmq.SNDMORE)
        socket.send(self.axistags.toJSON().encode('ascii'), flags|zmq.SNDMORE)
        return socket.send(transposed, flags, copy=copy, track=track)

    def imshow(self):
        '''
        Shorthand for 'vigra.imshow(self)'.
        '''
        import vigra
        return vigra.imshow(self)

    def show(self, normalize=True):
        '''
        Display this image in a vigra.pyqt.ImageWindow.

        The channels are intepreted as follows: 1 channel = gray image,
        2 channels = gray + alpha, 3 channels = RGB, 4 channels = RGB + alpha.

        The parameter `normalize` can be used to normalize an image's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip image values from nmin..nmax to 0..255

        `normalize` = nmax:
          lets nmin default to zero, i.e. scale & clip the range 0..nmax
          to 0..255

        `normalize` = True: (default)
          scale the image's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the image's values

        '''
        from pyqt.imagewindow import showImage

        ndim = self.ndim
        channelIndex = self.channelIndex
        if channelIndex < ndim:
            if self.channels > 4:
                raise RuntimeError("VigraArray.show(): array can have at most 4 channels.")
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.show(): array must have 2 non-channel axes.")

        return showImage(self.transposeToVigraOrder(), normalize)

    def qimage(self, normalize=True):
        '''
        Convert this image to a Qt QImage (mainly for display purposes).
        The present image must have 1, 2, 3, or 4 channels, and the resulting
        QImage will have QImage.Format_Indexed8 iff there was only one
        channel and QImage.Format_[A]RGB32 otherwise (with the last of
        2/4 channels being used as alpha channel).

        The parameter `normalize` can be used to normalize an image's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip image values from nmin..nmax to 0..255

        `normalize` = nmax:
          lets nmin default to zero, i.e. scale & clip the range 0..nmax
          to 0..255

        `normalize` = True: (default)
          scale the image's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the image's values

        '''
        try:
            import qimage2ndarray
        except Exception as e:
            from vigra import _fallbackModule
            _fallbackModule('qimage2ndarray',
            '''
            %s

            If qimage2ndarray is missing on your system, download it from
            http://pypi.python.org/pypi/qimage2ndarray/.''' % str(e))
            import qimage2ndarray

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.qimage(): array must have 2 non-channel axes.")

        yxImage = self.transposeToNumpyOrder()

        if self.channels == 1:
            q = qimage2ndarray.gray2qimage(yxImage.dropChannelAxis(), normalize)
        else:
            q = qimage2ndarray.array2qimage(yxImage, normalize)

        return q

    def asRGB(self, normalize=True):
        '''
        Expand a scalar array (i.e. an array with a single channel) into an RGB array with
        three identical color channels. This is useful when you want to paste color
        annotations (e.g. user labels) into the array.

        The parameter `normalize` can be used to normalize the array's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip array values from nmin..nmax to 0..255

        `normalize` = True: (default)
          scale the array's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the array's values

        '''
        if self.channels != 1:
            raise RuntimeError("VigraArray.asRGB(): array must have a single channel.")
        img = self.dropChannelAxis()
        shape = img.shape + (3,)
        axistags = copy.copy(img.axistags)
        axistags.append(AxisInfo.c)
        res = VigraArray(shape, axistags=axistags)
        if normalize:
            try:
                m, M = normalize
                clip = True
            except:
                m, M = img.min(), img.max()
                clip = False
            if m == M:
                return res
            f = 255.0 / (M - m)
            img = f * (img - m)
            if clip:
                img = numpy.minimum(255.0, numpy.maximum(0.0, img))
        res[...,0] = img
        res[...,1] = img
        res[...,2] = img
        return res

    ###############################################################
    #                                                             #
    #           new functionality enabled by axistags             #
    #                                                             #
    ###############################################################

    def copyValues(self, other):
        '''
        Copy the values of an array to another one. This is similar to::

            self[...] = other

        but will first transpose both arrays so that axistags are aligned. If
        there is no valid alignment, RuntimeError will be raised.
        '''
        self._copyValuesImpl(self, other)

    # IMPORTANT: do not remove or rename this property, it is called from C++
    @property
    def channelIndex(self):
        '''
        The index of the channel axis according to the axistags.
        For example, when axistags are 'x y c', the channel index is 2.
        If the axistags contain no channel axis, self.ndim is returned.
        '''
        return self.axistags.channelIndex

    # IMPORTANT: do not remove or rename this property, it is called from C++
    @property
    def innerNonchannelIndex(self):
        '''
        The index of the innermost non-channel axis according to the axistags.
        The innermost axis is determined by the AxisInfo sorting rules (see
        the :ref:`order definitions <array-order-parameter>` for details).
        For example, when axistags are 'x y c', the innerNonchannelIndex is 0.
        '''
        return self.axistags.innerNonchannelIndex

    @property
    def channels(self):
        '''
        The number of channels in this array (shape of the 'c' axis).
        If the axistags contain no channel axis, the number of channels is implicitly 1.
        '''
        i = self.channelIndex
        if i < self.ndim:
            return self.shape[i]
        else:
            return 1

    @property
    def width(self):
        '''
        The width of the array (shape of the 'x' axis).
        If the axistags contain no 'x' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('x')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.width(): axistag 'x' does not exist.")

    @property
    def height(self):
        '''
        The height of the array (shape of the 'y' axis).
        If the axistags contain no 'y' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('y')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.height(): axistag 'y' does not exist.")

    @property
    def depth(self):
        '''
        The depth of the array (shape of the 'z' axis).
        If the axistags contain no 'z' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('z')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.depth(): axistag 'z' does not exist.")

    @property
    def duration(self):
        '''
        The number of time steps in the array (shape of the 't' axis).
        If the axistags contain no 't' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('t')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.duration(): axistag 't' does not exist.")

    @property
    def spatialDimensions(self):
        '''
        The number of spatial axes in the array.
        That is, the number of entries in the axistags where the flag 'AxisType.Space'
        is set.
        '''
        return self.axistags.axisTypeCount(AxisType.Space)

    def iterImpl(self, type):
        axes = [k for k in range(self.ndim) if self.axistags[k].isType(type)]
        if axes:
            axes.sort(key=lambda x: self.axistags[x], reverse=True)
            slices = [slice(None)]*self.ndim
            for point in numpy.ndindex(*(self.shape[k] for k in axes)):
                for j in range(len(point)):
                    slices[axes[j]] = point[j]
                yield self[tuple(slices)]
        else:
            yield self

    def channelIter(self):
        '''
        Create an iterator over the channels of the array.
        In each iteration, you get the array corresponding to a single channel.
        If the axistags contain no channel axis, there is only one iteration
        which yields the entire array. Example::

            >>> rgb = vigra.RGBImage((200, 100))
            >>> rgb.axistags
            x y c
            >>> red, green, blue = rgb.channelIter()
            >>> red.axistags
            x y
            >>> red.shape
            (200, 100)
        '''
        return self.iterImpl(AxisType.Channels)

    def spaceIter(self):
        '''
        Create an iterator over all the spatial coordinates in the array.
        In each iteration, you get the value corresponding to a single
        coordinate location. If the axistags contain no spatial axes,
        there is only one iteration which yields the entire array. Example::

            >>> s = vigra.ScalarImage((2,2))
            >>> s.ravel()[...] = range(4)
            >>> for p in s.spaceIter():
            ....    print(p)
            0.0
            1.0
            2.0
            3.0
        '''
        return self.iterImpl(AxisType.Space)

    def timeIter(self):
        '''
        Create an iterator over the time points of the array.
        In each iteration, you get the array corresponding to a single time point.
        If the axistags contain no time axis, there is only one iteration
        which yields the entire array. Example::

            >>> from vigra import *
            >>> axistags = AxisTags(AxisInfo.t, AxisInfo.x, AxisInfo.y)
            >>> timesteps, width, height = 2, 200, 100
            >>> image_sequence = Image((timesteps, width, height), axistags=axistags)
            >>> step1, step2 = image_sequence.timeIter()
        '''
        return self.iterImpl(AxisType.Time)

    def sliceIter(self, key='z'):
        '''
        Create an iterator over a single spatial axis of the array.
        In each iteration, you get the array corresponding to one coordinate
        along the axis given by 'key'. For example, to iterate along the z-axis
        to get all x-y-slices in turn, you write::

            >>> volume = vigra.Volume((width, height, depth))
            >>> for slice in volume.sliceIter('z'):
            ...     processSlice(slice)
        '''
        i = self.axistags.index(key)
        if i < self.ndim:
            if not self.axistags[i].isSpatial():
                raise RuntimeError("VigraArray.sliceIter(): %s is not a spatial axis." % key)
            for k in range(self.shape[i]):
                yield self.bindAxis(i, k)
        else:
            yield self

    def bindAxis(self, which, index=0):
        '''
        Bind the axis identified by 'which' to the given 'index'.
        This is similar to::

            array[:, index, ...]

        but you do not need to know the position of the axis when you use the
        axis key (according to axistags). For example, to get the green channel
        of an RGBImage, you write::

            >>> rgb = vigra.RGBImage((200, 100))
            >>> green = rgb.bindAxis('c', 1)

        This gives the correct result irrespective of the axis ordering.
        '''
        if type(which) == str:
            which = self.axistags.index(which)
        return self[(slice(None),)*which + (index,) + (slice(None),)*(self.ndim-which-1)]

    def dropChannelAxis(self, ignoreMultiChannel=False):
        '''
        Drop the channel axis when it is a singleton.
        This function is for easy transformation of an array shaped
        (width, height, 1) into (width, height). A RuntimeError
        is raised when there is more than one channel, unless ignoreMultiChannel=True,
        in which case 'self' is returned.
        '''
        ci = self.channelIndex
        if ci == self.ndim:
            return self

        if self.shape[ci] != 1:
            if ignoreMultiChannel:
                return self
            raise RuntimeError("dropChannelAxis(): only allowed when there is a single channel.")
        return self.bindAxis(ci, 0)

    def insertChannelAxis(self, order=None):
        '''
        Insert a singleton channel axis.
        This function is for easy transformation of an array shaped
        (width, height) into (width, height, 1). The 'order' parameter
        determines the position of the new axis: when order is 'F', it
        will become the first axis, otherwise it will become the last
        one. A RuntimeError is raised when the array already contains a
        channel axis.
        '''
        ci = self.channelIndex
        if ci != self.ndim:
            return self

        if order == 'F':
            res = self[numpy.newaxis,...]
            res.axistags[0] = AxisInfo.c
        else:
            res = self[..., numpy.newaxis]
            res.axistags[-1] = AxisInfo.c
        return res

    def noTags(self):
        '''
        Drop the axistags. This is a shorthand for ``array.view(numpy.ndarray)``.
        '''
        return self.view(numpy.ndarray)

    def withAxes(self, *axistags, **kw):
        '''
        This function creates a view whose axistags are standardized in a
        desired way. The standardization can be specified in two forms:

        1. Provide ``axistags`` explicitly in any format understood by
           :func:`vigra.makeAxistags`. The original axistags are then
           transposed into the given order. When the original array contains
           axes not listed in the new specification, these axes are dropped
           if they are singletons (otherwise, an exception is raised).
           If requested axes is not present in the original array,
           singleton axes are inserted at the appropriate positions, provided
           the axis keys are among the predefined standard keys ('x', 'y', 'z',
           't', 'c', 'n', 'e', 'fx', 'fy', 'fz', 'ft'). The function fails if
           the original array contains axes of unknown type (key '?')::

                >>> array.axistags
                x y c
                >>> array.shape
                (100, 50, 1)
                >>> view = array.withAxes('tzyx')
                >>> view.axistags
                t z y x
                >>> view.shape
                (1, 1, 50, 100)

        2. Provide keyword arguments ``order`` and (optionally) ``noChannels``.
           The array is then transposed into the desired order ('C', 'F', or 'V').
           If ``noChannels=True``, the channel axis is dropped if it is a
           singleton, otherwise an exception is raised::

                >>> array.axistags
                x y c
                >>> array.shape
                (100, 50, 1)
                >>> view = array.withAxes(order='F')
                >>> view.axistags
                c x y
                >>> view.shape
                (1, 100, 50)
                >>> view = array.withAxes(order='C', noChannels=True)
                >>> view.axistags
                y x
                >>> view.shape
                (50, 100)

        The parameters ``axistags`` and ``order`` cannot be specified simultaneously.
        '''
        if len(axistags) == 1:
            axistags = axistags[0]
        if axistags and kw.get('order'):
            raise RuntimeError("vigra.withAxes(): you cannot specify 'axistags' and 'order' at the same time.")
        if axistags:
            axistags = makeAxistags(axistags)
            if self.axistags.compatible(axistags):
                return self
            axisinfo = []
            slicing = [0]*self.ndim
            for tag in axistags:
                index = self.axistags.index(tag.key)
                if index < self.ndim:
                    axisinfo.append(self.axistags[index])
                    slicing[index] = slice(None)
                else:
                    axisinfo.append(tag)
                    slicing.append(axisinfo[-1])
            for k in range(self.ndim):
                if self.axistags[k].isType(AxisType.UnknownAxisType):
                    raise RuntimeError("VigraArray.withAxes(): array must not contain axes of unknown type (key '?').")
                if slicing[k] == 0 and self.shape[k] != 1:
                    raise RuntimeError("VigraArray.withAxes(): cannot drop non-singleton axis '%s'." % self.axistags[k].key)
            permutation = AxisTags(axisinfo).permutationFromNumpyOrder()
            res = self[tuple(slicing)].transposeToNumpyOrder().transpose(permutation)
        else:
            res = self.transposeToOrder(kw.get('order'))
            if kw.get('noChannels'):
                res = res.dropChannelAxis()
        return res

    def view5D(self, order='C'):
        '''
            Create a 5-dimensional view containing the standard tags
            'x', 'y', 'z', 't', 'c' in the desired 'order' (which can be
            'C', 'F', and 'V' with the usual meaning). If 'self' has an
            axis key that is not among the five admissible keys, an
            exception is raised. Axes missing in 'self' are added as
            singleton axes with the appropriate tags.
        '''
        stdTags = ['x', 'y', 'z', 't', 'c']
        for tag in self.axistags:
            try:
                del stdTags[stdTags.index(tag.key)]
            except:
                raise RuntimeError("VigraArray.view5D(): array contains unsuitable axis key '%s'." % tag.key)
        index = [Ellipsis] + [newaxis(eval('AxisInfo.' + k)) for k in stdTags]
        return self[tuple(index)].transposeToOrder(order)

    def permutationToOrder(self, order):
        '''Create the permutation that would transpose this array into
           an array view with the given order (where order can be 'A',
           'C', 'F', 'V' with the usual meaning).
        '''
        return list(self.axistags.permutationToOrder(order))

    def permutationToNormalOrder(self, types=AxisType.AllAxes):
        '''Create the permutation that would transpose this array to
           normal order (that is, from the current axis order into
           ascending order, e.g. 'x y c' into 'c x y').
           If 'types' is not 'AxisType.AllAxes', only the axes with the
           desired types are considered.
        '''
        return list(self.axistags.permutationToNormalOrder(types))

    def permutationFromNormalOrder(self):
        '''Create the permutation that would transpose an array that is
           in normal (ascending) order into the axis order of this array.
           (e.g. 'c x y' into 'x y c').
        '''
        return list(self.axistags.permutationFromNormalOrder())

    def permutationToNumpyOrder(self):
        '''Create the permutation that would transpose this array to
           numpy order (that is, from the current axis order into
           descending order, e.g. 'x y c' into 'y x c').
        '''
        return list(self.axistags.permutationToNumpyOrder())

    def permutationFromNumpyOrder(self):
        '''Create the permutation that would transpose an array that is
           in numpy (descending) order into the axis order of this array.
           (e.g.  'y x c' into 'x y c').
        '''
        return list(self.axistags.permutationFromNumpyOrder())

    def permutationToVigraOrder(self):
        '''Create the permutation that would transpose this array to
           VIGRA order (that is, from the current axis order into
           ascending spatial order, but with the channel axis at the
           last position, e.g. 'c x y' into 'x y c').
        '''
        return list(self.axistags.permutationToVigraOrder())

    def permutationFromVigraOrder(self):
        '''Create the permutation that would transpose an array that is
           in VIGRA order (ascending spatial order, but with the channel
           axis at the last position) into the axis order of this array.
           (e.g.  'x y c' into 'c x y').
        '''
        return list(self.axistags.permutationFromVigraOrder())

    def transposeToOrder(self, order):
        '''
        Get a transposed view onto this array according to the given 'order'.
        Possible orders are:

        'A' or '' or None:
            return the array unchanged
        'C':
            transpose to descending axis order (e.g. 'z y x c')
        'F':
            transpose to ascending axis order (e.g. 'c x y z')
        'V':
            transpose to VIGRA order, i.e. ascending spatial axes, but
            the channel axis is last (e.g. 'x y z c')
        '''
        if not order or order == 'A':
            return self
        permutation = self.permutationToOrder(order)
        return self.transpose(permutation)

    def transposeToDefaultOrder(self):
        '''Equivalent to self.transposeToOrder(VigraArray.defaultOrder).
        '''
        return self.transposeToOrder(VigraArray.defaultOrder)

    def transposeToNormalOrder(self):
        '''Equivalent to self.transposeToOrder('F').
        '''
        return self.transposeToOrder('F')

    def transposeToVigraOrder(self):
        '''Equivalent to self.transposeToOrder('V').
        '''
        return self.transposeToOrder('V')

    def transposeToNumpyOrder(self):
        '''Equivalent to self.transposeToOrder('C').
        '''
        return self.transposeToOrder('C')

    @property
    def T(self):
        '''
        Equivalent to self.transpose()
        '''
        return self.transpose()

    def __getitem__(self, index):
        '''
        ``array.__getitem__(index)`` implements the indexing operator ``array[index]``.
        In addition to the usual numpy.ndarray indexing functionality, this function
        also updates the axistags of the result array. There are three cases:

            * getitem creates a scalar value => no axistags are required
            * getitem creates an array view => axistags are transferred from the
              corresponding axes of the base array
            * getitem creates a copy of an array (fancy indexing) => all axistags are '?'

        If the index contains 'numpy.newaxis', a new singleton axis is inserted at the
        appropriate position, whose axisinfo is set to '?' (unknown). If the index contains
        'vigra.newaxis(axisinfo)', the singleton axis will get the given axisinfo.
        '''
        try:
            res = numpy.ndarray.__getitem__(self, index)
        except:
            if not isinstance(index, Iterable):
                raise
            #create temporary index without AxisInfor in order to use np.ndarray.__getitem__
            tmpindex = tuple(None if isinstance(x, AxisInfo) else x for x in index)
            res = numpy.ndarray.__getitem__(self, tmpindex)
        if res is not self and hasattr(res, 'axistags'):
            if res.base is self or res.base is self.base:
                res.axistags = res._transform_axistags(index)
            else:
                res.axistags = res._empty_axistags(res.ndim)
        return res

    def subarray(self, p1, p2=None):
        '''
        Construct a subarray view from a pair of points. The first point denotes the start
        of the subarray (inclusive), the second its end (exclusive). For example,

            a.subarray((1,2,3), (4,5,6))  # equivalent to a[1:4, 2:5, 3:6]

        The given points must have the same dimension, otherwise an IndexError is raised.
        If only one point is given, it refers to the subarray's end, and the start is set
        to the point (0, 0, ...) with appropriate dimension, for example

            a.subarray((4,5,6))           # equivalent to a[:4, :5, :6]

        The function transforms the given point pair into a tuple of slices and calls
        self.__getitem__() in it. If the points have lower dimension than the array, an
        Ellipsis ('...') is implicitly appended to the slicing, so that missing axes
        are left unaltered.
        '''
        if p2 is not None:
            if len(p1) != len(p2):
                raise IndexError('VigraArray.subarray(): points must have the same dimension.')
            return self.__getitem__(tuple(map(lambda x,y: slice(x.__int__(), y.__int__()), p1, p2)))
        else:
            return self.__getitem__(tuple(map(lambda x: slice(x.__int__()), p1)))

    ###############################################################
    #                                                             #
    #      re-implement ndarray methods to handle axistags        #
    #                                                             #
    ###############################################################

    @_finalize_reduce_result
    @_preserve_doc
    def all(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.all(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def any(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.any(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def argmax(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.argmax(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def argmin(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.argmin(self, axis, out)

    @_preserve_doc
    def copy(self, order='A'):
        return self.__class__(self, dtype=self.dtype, order=order)

    @_preserve_doc
    def cumprod(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = numpy.ndarray.cumprod(self, axis, dtype, out)
        if axis is None and out is None:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @_preserve_doc
    def cumsum(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = numpy.ndarray.cumsum(self, axis, dtype, out)
        if axis is None and out is None:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @property
    def flat(self):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        return self.transposeToNumpyOrder().view(numpy.ndarray).flat

    @_preserve_doc
    def flatten(self, order='C'):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        res = self.transposeToNumpyOrder().view(numpy.ndarray).flatten(order)
        return taggedView(res, self._empty_axistags(1))

    @_finalize_reduce_result
    @_preserve_doc
    def max(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return numpy.ndarray.max(self, axis, out)

    @_preserve_doc
    def mean(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.mean, self, axis, dtype, out)

    @_finalize_reduce_result
    @_preserve_doc
    def min(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return numpy.ndarray.min(self, axis, out)

    @_preserve_doc
    def nonzero(self):
        res = tuple(k.view(type(self)) for k in numpy.ndarray.nonzero(self))
        for k in range(len(res)):
            res[k].axistags = AxisTags(AxisInfo(self.axistags[k]))
        return res

    @property
    def order(self):
        if self.flags.c_contiguous:
            return 'C'
        elif self.flags.f_contiguous:
            return 'F'
        elif self.channelIndex == self.ndim-1 and self.itemsize == self.strides[-1] and \
             reduce(lambda x, y: y if y >= x and x >= 0 else -1, self.strides[:-1], 0) >= 0:
            return 'V'
        return 'A'

    @_preserve_doc
    def prod(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.prod, self, axis, dtype, out)

    @_preserve_doc
    def ptp(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return numpy.ptp(self.transposeToOrder('C').view(numpy.ndarray), out=out)
        else:
            res = numpy.ptp(self.view(numpy.ndarray), axis=axis, out=out)
            if out is None:
                res = res.view(VigraArray)
                res.axistags = self._copy_axistags()
                del res.axistags[axis]
            return res

    @_preserve_doc
    def ravel(self, order='C'):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        res = self.transposeToNumpyOrder().view(numpy.ndarray).ravel(order)
        return taggedView(res, self._empty_axistags(1))

    @_preserve_doc
    def repeat(self, repeats, axis=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return numpy.ndarray.repeat(self.ravel(), repeats)
        else:
            return numpy.ndarray.repeat(self, repeats, axis)

    @_preserve_doc
    def reshape(self, shape, order='C', axistags=None):
        '''
        An additional keyword argument 'axistags' can be used to determine
        the result's axistags. If not given, all axes of the result will
        have type 'unknown'.
        '''
        if axistags is not None and len(shape) != len(axistags):
            raise RuntimeError("VigraArray.reshape(): size mismatch between shape and axistags.")
        res = numpy.ndarray.reshape(self, shape, order=order)
        if axistags is not None:
            res.axistags = copy.copy(axistags)
        else:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @_preserve_doc
    def resize(self, new_shape, refcheck=True, order=False, axistags=None):
        '''
        An additional keyword argument 'axistags' can be used to determine
        the self's axistags after the resize. If not given, all axes will have
        type 'unknown'.
        '''
        # ndarray.resize() internally checks for refcount <= 2
        # We need to increase the threshold because we have two
        # additional references ('self' and the argument to 'sys.getrefcount')
        if sys.getrefcount(self) <= 4:
            refcheck = False
        if axistags is not None and len(new_shape) != len(axistags):
            raise RuntimeError("VigraArray.resize(): size mismatch between shape and axistags.")
        numpy.ndarray.resize(self, new_shape, refcheck=refcheck)
        if axistags is not None:
            self.axistags = copy.copy(axistags)
        else:
            self.axistags = self._empty_axistags(self.ndim)

    @_preserve_doc
    def squeeze(self):
        res = numpy.ndarray.squeeze(self)
        if self.ndim != res.ndim:
            res.axistags = res._copy_axistags()
            for k in range(self.ndim-1, -1, -1):
                if self.shape[k] == 1:
                    del res.axistags[k]
        return res

    @_preserve_doc
    def std(self, axis=None, dtype=None, out=None, ddof=0):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.std, self, axis, dtype, out)

    @_preserve_doc
    def sum(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.sum, self, axis, dtype, out)

    @_preserve_doc
    def swapaxes(self, i, j, keepTags=False):
        '''
        Parameters 'i' and 'j' can also be ints (axis positions) or strings (axis keys).

        If 'keepsTags' is False, axistags are swapped like the axes, otherwise they remain
        unchanged such that the swapped axes aquire a new meaning.
        '''
        if type(i) == str:
            i = self.axistags.index(i)
        if type(j) == str:
            j = self.axistags.index(j)
        res = numpy.ndarray.swapaxes(self, i, j)
        res.axistags = res._copy_axistags()
        if not keepTags:
            try:
                res.axistags.swapaxes(i, j)
            except:
                res.axistags[i], res.axistags[j] = res.axistags[j], res.axistags[i]
        return res

    @_preserve_doc
    def take(self, indices, axis=None, out=None, mode='raise'):
        '''
        The array is always transposed to 'C' order before flattening.
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return numpy.ndarray.take(self.ravel(), indices, axis, out, mode)
        else:
            return numpy.ndarray.take(self, indices, axis, out, mode)

    @_preserve_doc
    def transpose(self, *axes, **keepTags):
        '''
        An additional keyword parameter 'keepTags' can be provided (it has to be passed as an explicit
        keyword parameter). If it is True, the axistags will remain unchanged such that the transposed
        axes aquire a new meaning.
        '''
        keepTags = keepTags.get('keepTags', False)
        res = numpy.ndarray.transpose(self, *axes)
        if not keepTags:
            res.axistags = res._transpose_axistags(*axes)
        return res

    @_preserve_doc
    def var(self, axis=None, dtype=None, out=None, ddof=0):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.var, self, axis, dtype, out)

    ###############################################################
    #                                                             #
    #        reimplement the numerical operators to make          #
    #             sure that array order is preserved              #
    #                                                             #
    ###############################################################

    def __abs__(self):
        return ufunc.absolute(self)

    def __add__(self, other):
        return ufunc.add(self, other)

    def __and__(self, other):
        return ufunc.bitwise_and(self, other)

    def __div__(self, other):
        return ufunc.divide(self, other)

    def __divmod__(self, other):
        return ufunc.floor_divide(self, other), ufunc.remainder(self, other)

    def __eq__(self, other):
        return ufunc.equal(self, other)

    def __floordiv__(self, other):
        return ufunc.floor_divide(self, other)

    def __ge__(self, other):
        return ufunc.greater_equal(self, other)

    def __gt__(self, other):
        return ufunc.greater(self, other)

    def __invert__(self):
        return ufunc.invert(self)

    def __le__(self, other):
        return ufunc.less_equal(self, other)

    def __lshift__(self, other):
        return ufunc.left_shift(self, other)

    def __lt__(self, other):
        return ufunc.less(self, other)

    def __mod__(self, other):
        return ufunc.remainder(self, other)

    def __mul__(self, other):
        return ufunc.multiply(self, other)

    def __ne__(self, other):
        return ufunc.not_equal(self, other)

    def __neg__(self):
        return ufunc.negative(self)

    def __or__(self, other):
        return ufunc.bitwise_or(self, other)

    def __pos__(self):
        return self

    def __pow__(self, other):
        return ufunc.power(self, other)

    def __radd__(self, other):
        return ufunc.add(other, self)

    def __radd__(self, other):
        return ufunc.add(other, self)

    def __rand__(self, other):
        return ufunc.bitwise_and(other, self)

    def __rdiv__(self, other):
        return ufunc.divide(other, self)

    def __rdivmod__(self, other):
        return ufunc.floor_divide(other, self), ufunc.remainder(other, self)

    def __rfloordiv__(self, other):
        return ufunc.floor_divide(other, self)

    def __rlshift__(self, other):
        return ufunc.left_shoft(other, self)

    def __rmod__(self, other):
        return ufunc.remainder(other, self)

    def __rmul__(self, other):
        return ufunc.multiply(other, self)

    def __ror__(self, other):
        return ufunc.bitwise_or(other, self)

    def __rpow__(self, other):
        return ufunc.power(other, self)

    def __rrshift__(self, other):
        return ufunc.right_shift(other, self)

    def __rshift__(self, other):
        return ufunc.right_shift(self, other)

    def __rsub__(self, other):
        return ufunc.subtract(other, self)

    def __rtruediv__(self, other):
        return ufunc.true_divide(other, self)

    def __rxor__(self, other):
        return ufunc.bitwise_xor(other, self)

    def __sub__(self, other):
        return ufunc.subtract(self, other)

    def __truediv__(self, other):
        return ufunc.true_divide(self, other)

    def __xor__(self, other):
        return ufunc.bitwise_xor(self, other)


##################################################################

# channelCount == None: array must not have channels
# channelCount == 0:    array can have arbitrary number of channels (including None)
def _adjustShape(shape, order, spatialDimensions, channelCount, axistags, name):
    if order is None:
        order = VigraArray.defaultOrder
    if len(shape) == spatialDimensions:
        if channelCount is not None and channelCount == 0:
            channelCount = 1
        if channelCount:
            if order == 'F':
                shape = (channelCount,) + shape
            else:
                shape = shape + (channelCount,)
    else:
        if channelCount is None or len(shape) != spatialDimensions + 1:
            raise RuntimeError("%s: input shape has wrong length." % name)
        if channelCount > 0:
            if order == 'F':
                if shape[0] != channelCount:
                    raise RuntimeError("%s: input shape has wrong number of channels." % name)
            else:
                if shape[-1] != channelCount:
                    raise RuntimeError("%s: input shape has wrong number of channels." % name)
    if axistags is None:
        axistags = VigraArray.defaultAxistags(spatialDimensions+1, order)
    if len(shape) == spatialDimensions:
        axistags.dropChannelAxis()
    if len(shape) != len(axistags):
        raise RuntimeError("%s: size mismatch between shape and axistags." % name)
    return shape, axistags

def _adjustArray(array, order, spatialDimensions, channelCount, axistags, name):
    if order is None:
        order = VigraArray.defaultOrder
    if array.ndim == spatialDimensions:
        if channelCount is not None and channelCount > 1:
            raise RuntimeError("%s: input array has too few dimensions." % name)
        if hasattr(array, 'axistags'):
            if array.channelIndex != array.ndim:
                raise RuntimeError("%s: input array has too few non-channel axes." % name)
        if channelCount:
            if hasattr(array, 'axistags'):
                array = array.insertChannelAxis(order)
            elif order == 'F':
                array = array[numpy.newaxis,...]
            else:
                array = array[...,numpy.newaxis]
    else:
        if channelCount is None or array.ndim != spatialDimensions+1:
            raise RuntimeError("%s: input array has wrong number of dimensions." % name)
        if hasattr(array, 'axistags'):
            channelIndex = array.channelIndex
            if channelIndex == array.ndim:
                raise RuntimeError("%s: input array has no channel axis." % name)
            if channelCount > 0 and array.shape[channelIndex] != channelCount:
                raise RuntimeError("%s: input array has wrong number of channels." % name)
    if axistags is None:
        if hasattr(array, 'axistags'):
            axistags = copy.copy(array.axistags)
        else:
            axistags = VigraArray.defaultAxistags(spatialDimensions+1, order)
    if array.ndim == spatialDimensions:
        axistags.dropChannelAxis()
    if array.ndim != len(axistags):
        raise RuntimeError("%s: axistags have wrong number of axes." % name)
    return array, axistags

def _adjustInput(obj, order, spatialDimensions, channelCount, axistags, name):
    if isinstance(obj, numpy.ndarray):
        return _adjustArray(obj, order, spatialDimensions, channelCount, axistags, name)
    else:
        return _adjustShape(obj, order, spatialDimensions, channelCount, axistags, name)

#################################################################

def Image(obj, dtype=numpy.float32, order=None,
          init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing an image (i.e. an array with
    two spatial axes 'x' and 'y' and optionally a channel axis 'c').
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are not image-like.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 0, axistags, "vigra.Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def ScalarImage(obj, dtype=numpy.float32, order=None,
                init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a single-band image (i.e. an
    array with two spatial axes 'x' and 'y' and no channel axis).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a single-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, None, axistags, "vigra.ScalarImage()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector2Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 2-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 2 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 2-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 2, axistags, "vigra.Vector2Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector3Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 3-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 3-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 3, axistags, "vigra.Vector3Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector4Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 4-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 4 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 4-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 4, axistags, "vigra.Vector4Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def RGBImage(obj, dtype=numpy.float32, order=None,
             init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a RGB image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for an RGB image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 3, axistags, "vigra.RGBImage()")
    res = VigraArray(obj, dtype, None, init, value, axistags)
    res.axistags['c'].description = 'RGB'
    return res

#################################################################

def Volume(obj, dtype=numpy.float32, order=None,
           init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a volume (i.e. an array with
    three spatial axes 'x', 'y' and 'z' and optionally a channel axis 'c').
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are not volume-like.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 0, axistags, "vigra.Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def ScalarVolume(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a single-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and no channel axis).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a single-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, None, axistags, "vigra.ScalarVolume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector2Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 2-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 2 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 2-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 2, axistags, "vigra.Vector2Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector3Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 3-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 3-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 3, axistags, "vigra.Vector3Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector4Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 4-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 4 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 4-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 4, axistags, "vigra.Vector4Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector6Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 6-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 6 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 6-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 6, axistags, "vigra.Vector6Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def RGBVolume(obj, dtype=numpy.float32, order=None,
              init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing an RGB volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for an RGB volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 3, axistags, "vigra.RGBVolume()")
    res = VigraArray(obj, dtype, None, init, value, axistags)
    res.axistags['c'].description = 'RGB'
    return res

#################################################################

class ImagePyramid(list):
    def __init__(self, image, copyImageToLevel = 0, lowestLevel = 0, highestLevel = 0):
        ''' Create a new pyramid.
            The new pyramid levels range from 'lowestLevel' to 'highestLevel' (inclusive),
            and the given 'image' is copied to 'copyImageToLevel'. The images at other
            levels are filled with zeros and sized so that the shape is reduced by half
            when going up (to higher levels), and doubled when going down.

            This class can handle multi-channel images, but only when image.channelIndex
            exists and returns image.ndim-1 (i.e. the image must have axistags, and the
            channel axis must correspond to the last index, as in C- or V-order).
        '''
        if lowestLevel > copyImageToLevel or highestLevel < copyImageToLevel:
            raise ValueError('ImagePyramid(): copyImageToLevel must be between lowestLevel and highestLevel (inclusive)')

        import copy
        list.__init__(self, [copy.deepcopy(image)])
        self._lowestLevel = copyImageToLevel
        self._highestLevel = copyImageToLevel
        self.createLevel(lowestLevel)
        self.createLevel(highestLevel)

    @property
    def lowestLevel(self):
        '''The pyramids lowest level.
        '''
        return self._lowestLevel

    @property
    def highestLevel(self):
        '''The pyramids highest level (inclusive).
        '''
        return self._highestLevel

    @property
    def ndim(self):
        '''The dimension of the images in this pyramid.
        '''
        return self[self._highestLevel].ndim

    @property
    def dtype(self):
        '''The pixel type of the images in this pyramid.
        '''
        return self[self._highestLevel].dtype

    @property
    def channelIndex(self):
        '''The channel dimension of the images in this pyramid.
           If the images have no axistags, or no channel axis is
           specified, this defaults to 'ndim'.
        '''
        return getattr(self[self._highestLevel], 'channelIndex', self.ndim)

    @property
    def axistags(self):
        '''The axistags of the images in this pyramid.
        '''
        return getattr(self[self._highestLevel], 'axistags', None)

    def __getitem__(self, level):
        '''Get the image at 'level'.
           Raises IndexError when the level does not exist.
        '''
        if level < self.lowestLevel or level > self.highestLevel:
            raise IndexError("ImagePyramid[level]: level out of range.")
        return list.__getitem__(self, level - self.lowestLevel)

    def __setitem__(self, level, image):
        '''Copy the data of the given 'image' to the image at 'level'.
           Raises IndexError when the level does not exist.
        '''
        self[level][...] = image[...]

    def expandImpl(self, src, dest, centerValue):
        import vigra.filters as filters

        ss, ds = src.shape, dest.shape
        s = [ss[k] if 2*ss[k] == ds[k] else -1 for k in range(len(ss))]

        smooth1 = filters.explictKernel(-1, 1, numpy.array([0.5 - centerValue, 2.0*centerValue, 0.5 - centerValue]))
        smooth2 = filters.explictKernel(-1, 0, numpy.array([0.5, 0.5]));

        filters.convolve(src, (smooth1, smooth1), out=dest[::2,::2])
        filters.convolve(src[:,:s[1]], (smooth1, smooth2), out=dest[::2,1::2])
        filters.convolve(src[:s[0],:], (smooth2, smooth1), out=dest[1::2,::2])
        filters.convolve(src[:s[0],:s[1]], (smooth2, smooth2), out=dest[1::2,1::2])

    def reduce(self, srcLevel, destLevel, centerValue = 0.42):
        '''Reduce the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue'. srcLevel must be smaller than destLevel.

           For more details, see pyramidReduceBurtFilter_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel > destLevel:
            raise RuntimeError("ImagePyramid::reduce(): srcLevel <= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::reduce(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth = filters.burtFilterKernel(0.25 - 0.5*centerValue)
        for k in range(srcLevel, destLevel):
            i = filters.convolve(self[k], smooth)
            self[k+1] = i[::2,::2]

    def expand(self, srcLevel, destLevel, centerValue = 0.42):
        '''Expand the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue'. srcLevel must be larger than destLevel.

           For more details, see pyramidExpandBurtFilter_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        if srcLevel < destLevel:
            raise RuntimeError("ImagePyramid::expand(): srcLevel >= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::expand(): srcLevel does not exist.")
        self.createLevel(destLevel)

        for k in range(srcLevel, destLevel, -1):
            self.expandImpl(self[k], self[k-1], centerValue)

    def reduceLaplacian(self, srcLevel, destLevel, centerValue = 0.42):
        '''Reduce the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue', and compute Laplacian images for the levels
           srcLevel ... destLevel-1. srcLevel must be smaller than destLevel.

           For more details, see pyramidReduceBurtLaplacian_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel > destLevel:
            raise RuntimeError("ImagePyramid::reduceLaplacian(): srcLevel <= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::reduceLaplacian(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth = filters.burtFilterKernel(0.25 - 0.5*centerValue)
        for k in range(srcLevel, destLevel):
            i = filters.convolve(self[k], smooth)
            self[k+1] = i[::2,::2]
            self.expandImpl(self[k+1], i, centerValue)
            self[k] = i - self[k]

    def expandLaplacian(self, srcLevel, destLevel, centerValue = 0.42):
        '''Expand the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue', and reconstruct the images for the levels
           srcLevel-1 ... destLevel from their Laplacian images. srcLevel must be larger than destLevel.

           For more details, see pyramidExpandBurtLaplacian_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel < destLevel:
            raise RuntimeError("ImagePyramid::expandLaplacian(): srcLevel >= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::expandLaplacian(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth1 = filters.explictKernel(-1, 1, numpy.array([0.5 - centerValue, 2.0*centerValue, 0.5 - centerValue]))
        smooth2 = filters.explictKernel(-1, 0, numpy.array([0.5, 0.5]));
        for k in range(srcLevel, destLevel, -1):
            i = self[k-1].__class__(self[k-1].shape, dtype = self[k-1].dtype)
            self.expandImpl(self[k], i, centerValue)
            self[k-1] = i - self[k-1]

    def createLevel(self, level):
        ''' Make sure that 'level' exists. If 'level' is outside the current range of levels,
            empty images of the appropriate shape are inserted into the pyramid.
        '''
        channelIndex = self.channelIndex
        hasChannels = channelIndex < self.ndim
        axistags = self.axistags
        if level > self.highestLevel:
            image = list.__getitem__(self, -1)
            for i in range(self.highestLevel, level):
                newShape = [int((k + 1) // 2) for k in image.shape]
                if hasChannels:
                    newShape[channelIndex] = image.shape[channelIndex]
                if axistags:
                    image = image.__class__(newShape, dtype=image.dtype, axistags=axistags)
                else:
                    image = image.__class__(newShape, dtype=image.dtype)
                    image[...] = 0
                self.append(image)
            self._highestLevel = level
        elif level < self.lowestLevel:
            image = list.__getitem__(self, 0)
            for i in range(self.lowestLevel, level, -1):
                newShape = [2*k-1 for k in image.shape]
                if hasChannels:
                    newShape[channelIndex] = image.shape[channelIndex]
                if axistags:
                    image = image.__class__(newShape, dtype=image.dtype, axistags=axistags)
                else:
                    image = image.__class__(newShape, dtype=image.dtype)
                    image[...] = 0
                self.insert(0, image)
            self._lowestLevel = level