1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#######################################################################
#
# Copyright 2009-2010 by Ullrich Koethe
#
# This file is part of the VIGRA computer vision library.
# The VIGRA Website is
# http://hci.iwr.uni-heidelberg.de/vigra/
# Please direct questions, bug reports, and contributions to
# ullrich.koethe@iwr.uni-heidelberg.de or
# vigra@informatik.uni-hamburg.de
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use,
# copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following
# conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#
#######################################################################
import sys
print("\nexecuting test file", __file__, file=sys.stderr)
exec(compile(open('set_paths.py', "rb").read(), 'set_paths.py', 'exec'))
import numpy as np
from vigra import *
from vigra.filters import *
from vigra.sampling import *
from vigra.noise import *
import vigra.arraytypes as at
#in the hope, that functions are tested in C++, we basicly test return types
#image=readImage("/export/home/nhuesken/sas/experiments/testdata/bmpmultilabel.bmp")
image=at.RGBImage(np.random.rand(100,100,3)*255,dtype=np.float32)
scalar_image=at.ScalarImage(np.random.rand(100,100)*255,dtype=np.float32)
volume256=at.Volume(np.random.rand(100,100,100)*255,dtype=np.uint8)
volumeBin=at.Volume(np.random.rand(100,100,100))>0.5
def checkImages(i1,i2):
assert(i1.shape==i2.shape)
assert(np.sum(i1==i2)!=0)
def checkAboutSame(i1,i2):
assert(i1.shape==i2.shape)
difference=np.sum(np.abs(i1-i2))/float(np.size(i1))
assert(difference<5)
def test_simpleRotate():
i2=rotateImageSimple(image,orientation=RotationDirection.CLOCKWISE);
#simple basic test
assert(i2.shape[0] == image.shape[1])
assert(i2.shape[1] == image.shape[0])
#test, that they are compatible
i3=rotateImageSimple(i2,orientation=RotationDirection.COUNTER_CLOCKWISE);
checkImages(image,i3)
i2=rotateImageSimple(image,orientation=RotationDirection.UPSIDE_DOWN);
i3=rotateImageSimple(i2,orientation=RotationDirection.COUNTER_CLOCKWISE);
i2=rotateImageSimple(i3,orientation=RotationDirection.COUNTER_CLOCKWISE);
checkImages(image,i2)
def test_rotate():
i2=rotateImageSimple(image)
i3=i2
rotateImageDegree(image,degree=90,out=i3)
checkImages(i2,i3)
def test_resample():
#just testing the size
i2=resampleImage(image,factor=0.5)
assert(i2.shape[0]==image.shape[0]*0.5)
def test_resize():
i2=resizeImageNoInterpolation(image,shape=(image.shape[0]+10,image.shape[1]+10))
i2=resizeImageNoInterpolation(image,shape=(image.shape[0],image.shape[1]))
checkAboutSame(i2,image)
i2=resizeImageCatmullRomInterpolation(image,shape=(image.shape[0]+10,image.shape[1]+10))
i2=resizeImageCatmullRomInterpolation(image,shape=(image.shape[0],image.shape[1]))
checkAboutSame(i2,image)
i2=resizeImageCoscotInterpolation( image,shape=(image.shape[0]+10,image.shape[1]+10))
i2=resizeImageCoscotInterpolation( image,shape=(image.shape[0],image.shape[1]))
checkAboutSame(i2,image)
i2=resizeImageLinearInterpolation( image,shape=(image.shape[0]+10,image.shape[1]+10))
i2=resizeImageLinearInterpolation( image,shape=(image.shape[0],image.shape[1]))
checkAboutSame(i2,image)
i2=resizeImageSplineInterpolation(
image,shape=(image.shape[0]+10,image.shape[1]+10),order=4)
i2=resizeImageSplineInterpolation(
image,shape=(image.shape[0],image.shape[1]), order=4)
checkAboutSame(i2,image)
def test_2DMorphology():
i2=discErosion(image.astype(np.uint8),radius=2)
i3=(255-discDilation((256-image).astype(np.uint8),radius=2))
checkImages(i2,i3)
i2=discOpening(image.astype(np.uint8),radius=2)
i3=(255-discDilation((256-image).astype(np.uint8),radius=2))
checkImages(i2,i3)
def test_3DMorphologyBinary():
i3=0
i2=multiBinaryClosing(volumeBin,radius=2)
i3=multiBinaryOpening(volumeBin==False,radius=2)
i3=i3==False
checkImages(i2,i3)
def test_3DMorphologyGrayscale():
i2=multiGrayscaleErosion(volume256,sigma=2)
i3=(256-multiGrayscaleDilation(256-volume256,sigma=2))
checkImages(i2,i3)
i2=multiGrayscaleOpening(volume256,sigma=2)
i3=(256-multiGrayscaleClosing(256-volume256,sigma=2))
checkImages(i2,i3)
def test_Noise():
# ATM, we only test that these things run
image = RGBImage((100,100))
image[:50,:50] = (10, 10, 10)
image[50:,:50] = (20, 20, 20)
image[50:,50:] = (30, 30, 30)
image += np.random.normal(size=(100,100, 3))
noiseVarianceEstimation(image.bindAxis('c', 0))
noiseVarianceClustering(image.bindAxis('c', 0))
nonparametricNoiseNormalization(image)
quadraticNoiseNormalizationEstimated(image)
linearNoiseNormalizationEstimated(image)
quadraticNoiseNormalization(image,1.0,1.0,1.0)
linearNoiseNormalization(image,1.0,1.0)
def test_Kernel1D():
# we just test functions that were not directly imported
contents = np.array([-1,2,3,5,3,2,-1], dtype=np.float64)
k1 = Kernel1D()
k1.initExplicitly(-3,3, contents)
for k in range(-3, 4):
assert(k1[k]==contents[k+3])
k1[-2]=5
assert(k1[-2]==5)
def test_Kernel2D():
contents = np.array([[0,1,2],[3,4,5],[6,7,8]],dtype=np.float64)
k2=Kernel2D()
k2.initExplicitly((-1,-1),(1,1), contents)
for i in range(-1, 2):
for j in range(-1, 2):
assert(k2[i,j]==contents[i+1, j+1])
k2[0,-1]=-5
assert(k2[0,-1]==-5)
|