File: test2.py

package info (click to toggle)
libvigraimpex 1.12.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 50,016 kB
  • sloc: cpp: 57,841; python: 8,568; ansic: 1,798; sh: 108; makefile: 82; javascript: 65
file content (172 lines) | stat: -rw-r--r-- 6,487 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#######################################################################
#
#         Copyright 2009-2010 by Ullrich Koethe
#
#    This file is part of the VIGRA computer vision library.
#    The VIGRA Website is
#        http://hci.iwr.uni-heidelberg.de/vigra/
#    Please direct questions, bug reports, and contributions to
#        ullrich.koethe@iwr.uni-heidelberg.de    or
#        vigra@informatik.uni-hamburg.de
#
#    Permission is hereby granted, free of charge, to any person
#    obtaining a copy of this software and associated documentation
#    files (the "Software"), to deal in the Software without
#    restriction, including without limitation the rights to use,
#    copy, modify, merge, publish, distribute, sublicense, and/or
#    sell copies of the Software, and to permit persons to whom the
#    Software is furnished to do so, subject to the following
#    conditions:
#
#    The above copyright notice and this permission notice shall be
#    included in all copies or substantial portions of the
#    Software.
#
#    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND
#    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
#    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
#    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
#    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
#    OTHER DEALINGS IN THE SOFTWARE.
#
#######################################################################

import sys
print("\nexecuting test file", __file__, file=sys.stderr)
exec(compile(open('set_paths.py', "rb").read(), 'set_paths.py', 'exec'))

import numpy as np
from vigra import *
from vigra.filters import *
from vigra.sampling import *
from vigra.noise import *
import vigra.arraytypes as at

#in the hope, that functions are tested in C++, we basicly test return types

#image=readImage("/export/home/nhuesken/sas/experiments/testdata/bmpmultilabel.bmp")
image=at.RGBImage(np.random.rand(100,100,3)*255,dtype=np.float32)
scalar_image=at.ScalarImage(np.random.rand(100,100)*255,dtype=np.float32)
volume256=at.Volume(np.random.rand(100,100,100)*255,dtype=np.uint8)
volumeBin=at.Volume(np.random.rand(100,100,100))>0.5

def checkImages(i1,i2):
    assert(i1.shape==i2.shape)
    assert(np.sum(i1==i2)!=0)

def checkAboutSame(i1,i2):
    assert(i1.shape==i2.shape)
    difference=np.sum(np.abs(i1-i2))/float(np.size(i1))
    assert(difference<5)

def test_simpleRotate():
    i2=rotateImageSimple(image,orientation=RotationDirection.CLOCKWISE);
    #simple basic test
    assert(i2.shape[0] == image.shape[1])
    assert(i2.shape[1] == image.shape[0])
    #test, that they are compatible
    i3=rotateImageSimple(i2,orientation=RotationDirection.COUNTER_CLOCKWISE);
    checkImages(image,i3)
    i2=rotateImageSimple(image,orientation=RotationDirection.UPSIDE_DOWN);
    i3=rotateImageSimple(i2,orientation=RotationDirection.COUNTER_CLOCKWISE);
    i2=rotateImageSimple(i3,orientation=RotationDirection.COUNTER_CLOCKWISE);
    checkImages(image,i2)

def test_rotate():
    i2=rotateImageSimple(image)
    i3=i2
    rotateImageDegree(image,degree=90,out=i3)
    checkImages(i2,i3)

def test_resample():
    #just testing the size
    i2=resampleImage(image,factor=0.5)
    assert(i2.shape[0]==image.shape[0]*0.5)
    
    
def test_resize():
    i2=resizeImageNoInterpolation(image,shape=(image.shape[0]+10,image.shape[1]+10))
    i2=resizeImageNoInterpolation(image,shape=(image.shape[0],image.shape[1]))
    checkAboutSame(i2,image)

    i2=resizeImageCatmullRomInterpolation(image,shape=(image.shape[0]+10,image.shape[1]+10))
    i2=resizeImageCatmullRomInterpolation(image,shape=(image.shape[0],image.shape[1]))
    checkAboutSame(i2,image)

    i2=resizeImageCoscotInterpolation( image,shape=(image.shape[0]+10,image.shape[1]+10))
    i2=resizeImageCoscotInterpolation( image,shape=(image.shape[0],image.shape[1]))
    checkAboutSame(i2,image)

    i2=resizeImageLinearInterpolation( image,shape=(image.shape[0]+10,image.shape[1]+10))
    i2=resizeImageLinearInterpolation( image,shape=(image.shape[0],image.shape[1]))
    checkAboutSame(i2,image)

    i2=resizeImageSplineInterpolation(
        image,shape=(image.shape[0]+10,image.shape[1]+10),order=4)
    i2=resizeImageSplineInterpolation(
        image,shape=(image.shape[0],image.shape[1]), order=4)
    checkAboutSame(i2,image)

def test_2DMorphology():
    i2=discErosion(image.astype(np.uint8),radius=2)
    i3=(255-discDilation((256-image).astype(np.uint8),radius=2))
    checkImages(i2,i3)
    i2=discOpening(image.astype(np.uint8),radius=2)
    i3=(255-discDilation((256-image).astype(np.uint8),radius=2))
    checkImages(i2,i3)


def test_3DMorphologyBinary():
    i3=0
    i2=multiBinaryClosing(volumeBin,radius=2)
    i3=multiBinaryOpening(volumeBin==False,radius=2)
    i3=i3==False
    checkImages(i2,i3)

def test_3DMorphologyGrayscale():
    i2=multiGrayscaleErosion(volume256,sigma=2)
    i3=(256-multiGrayscaleDilation(256-volume256,sigma=2))
    checkImages(i2,i3)
    i2=multiGrayscaleOpening(volume256,sigma=2)
    i3=(256-multiGrayscaleClosing(256-volume256,sigma=2))
    checkImages(i2,i3)

def test_Noise():
    # ATM, we only test that these things run
    
    image = RGBImage((100,100))
    image[:50,:50] = (10, 10, 10)
    image[50:,:50] = (20, 20, 20)
    image[50:,50:] = (30, 30, 30)
    image += np.random.normal(size=(100,100, 3))
    
    noiseVarianceEstimation(image.bindAxis('c', 0))
    noiseVarianceClustering(image.bindAxis('c', 0))
    nonparametricNoiseNormalization(image)
    quadraticNoiseNormalizationEstimated(image)
    linearNoiseNormalizationEstimated(image)
    quadraticNoiseNormalization(image,1.0,1.0,1.0)
    linearNoiseNormalization(image,1.0,1.0)
    
def test_Kernel1D():
    # we just test functions that were not directly imported
    contents = np.array([-1,2,3,5,3,2,-1], dtype=np.float64)
    k1 = Kernel1D()
    k1.initExplicitly(-3,3, contents)
    for k in range(-3, 4):
        assert(k1[k]==contents[k+3])
    k1[-2]=5
    assert(k1[-2]==5)

def test_Kernel2D():
    contents = np.array([[0,1,2],[3,4,5],[6,7,8]],dtype=np.float64)
    k2=Kernel2D()
    k2.initExplicitly((-1,-1),(1,1), contents)
    for i in range(-1, 2):
        for j in range(-1, 2):
            assert(k2[i,j]==contents[i+1, j+1])
    k2[0,-1]=-5
    assert(k2[0,-1]==-5)