1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include <config.h>
#include <math.h>
#include "renderer.h"
#include "compute.h"
#define PI 3.14159
t_complex _inf_fct(InfinitePrivate *priv, t_complex a,int n,int p1,int p2) //p1 et p2:0-4
{
t_complex b;
float fact;
float an;
float circle_size;
float speed;
float co,si;
a.x-=priv->plugwidth/2;
a.y-=priv->plugheight/2;
switch (n) {
case 0:
an=0.025*(p1-2)+0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.25;
speed=2000+p2*500;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
fact=-(sqrt(b.x*b.x+b.y*b.y)-circle_size)/speed+1;
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
case 1:
an=0.015*(p1-2)+0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.45;
speed=4000+p2*1000;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
fact=(sqrt(b.x*b.x+b.y*b.y)-circle_size)/speed+1;
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
case 2:
an=0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.25;
speed=400+p2*100;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
fact=-(sqrt(b.x*b.x+b.y*b.y)-circle_size)/speed+1;
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
case 3:
an=(sin(sqrt(a.x*a.x+a.y*a.y)/20)/20)+0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.25;
speed=4000;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
fact=-(sqrt(b.x*b.x+b.y*b.y)-circle_size)/speed+1;
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
case 4:
an=0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.25;
speed=sin(sqrt(a.x*a.x+a.y*a.y)/5)*3000+4000;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
fact=-(sqrt(b.x*b.x+b.y*b.y)-circle_size)/speed+1;
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
case 5:
b.x=a.x*1.02;
b.y=a.y*1.02;
break;
case 6:
an=0.002;
co=cos(an);
si=sin(an);
circle_size=priv->plugheight*0.25;
fact=1+cos(atan(a.x/(a.y+0.00001))*6)*0.02;
b.x=(co*a.x-si*a.y);
b.y=(si*a.x+co*a.y);
b.x=(b.x*fact);
b.y=(b.y*fact);
break;
}
b.x+=priv->plugwidth/2;
b.y+=priv->plugheight/2;
if (b.x<0)
b.x=0;
if (b.y<0)
b.y=0;
if (b.x>priv->plugwidth-1)
b.x=priv->plugwidth-1;
if (b.y>priv->plugheight-1)
b.y=priv->plugheight-1;
return b;
}
void _inf_generate_sector(InfinitePrivate *priv, int g,int f,int p1,int p2,int debut,int step,t_interpol* vector_field)
{
int fin=debut+step;
const int prop_transmitted=249;
const int b_add=g*priv->plugwidth*priv->plugheight;
t_coord c;
if (fin>priv->plugheight)
fin=priv->plugheight;
for (c.y=debut;c.y<fin;c.y++)
for (c.x=0;c.x<priv->plugwidth;c.x++) {
t_complex a;
float fpy;
int rw,lw,add;
uint32_t w1,w2,w3,w4;
uint32_t x,y;
a.x=(float)c.x;
a.y=(float)c.y;
a=_inf_fct(priv, a,f,p1,p2);
add=c.x+c.y*priv->plugwidth;
x=(int)(a.x);
y=(int)(a.y);
vector_field[b_add+add].coord=(x<<16)|y;
fpy=a.y-floor(a.y);
rw=(int)((a.x-floor(a.x))*prop_transmitted);
lw=prop_transmitted-rw;
w4=(int)(fpy*rw);
w2=rw-w4;
w3=(int)(fpy*lw);
w1=lw-w3;
vector_field[b_add+add].weight=(w1<<24)|(w2<<16)|(w3<<8)|w4;
}
}
void _inf_generate_vector_field(InfinitePrivate *priv, t_interpol* vector_field)
{
int f;
int i,p1,p2;
for (f=0;f<NB_FCT;f++) {
p1=2;
p2=2;
for (i=0;i<priv->plugheight;i+=10)
_inf_generate_sector(priv, f,f,p1,p2,i,10,vector_field);
}
}
|