1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
|
/********************************************************************
* *
* THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
* *
* THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2001 *
* by the XIPHOPHORUS Company http://www.xiph.org/ *
* *
********************************************************************
function: psychoacoustics not including preecho
last mod: $Id: psy.c,v 1.64 2001/12/22 09:40:39 xiphmont Exp $
********************************************************************/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "vorbis/codec.h"
#include "codec_internal.h"
#include "masking.h"
#include "psy.h"
#include "os.h"
#include "lpc.h"
#include "smallft.h"
#include "scales.h"
#include "misc.h"
#define NEGINF -9999.f
/* Why Bark scale for encoding but not masking computation? Because
masking has a strong harmonic dependency */
vorbis_look_psy_global *_vp_global_look(vorbis_info *vi){
codec_setup_info *ci=vi->codec_setup;
vorbis_info_psy_global *gi=&ci->psy_g_param;
vorbis_look_psy_global *look=_ogg_calloc(1,sizeof(*look));
look->channels=vi->channels;
look->ampmax=-9999.;
look->gi=gi;
return(look);
}
void _vp_global_free(vorbis_look_psy_global *look){
if(look){
memset(look,0,sizeof(*look));
_ogg_free(look);
}
}
void _vi_gpsy_free(vorbis_info_psy_global *i){
if(i){
memset(i,0,sizeof(*i));
_ogg_free(i);
}
}
void _vi_psy_free(vorbis_info_psy *i){
if(i){
memset(i,0,sizeof(*i));
_ogg_free(i);
}
}
vorbis_info_psy *_vi_psy_copy(vorbis_info_psy *i){
vorbis_info_psy *ret=_ogg_malloc(sizeof(*ret));
memcpy(ret,i,sizeof(*ret));
return(ret);
}
/* Set up decibel threshold slopes on a Bark frequency scale */
/* ATH is the only bit left on a Bark scale. No reason to change it
right now */
static void set_curve(float *ref,float *c,int n, float crate){
int i,j=0;
for(i=0;i<MAX_BARK-1;i++){
int endpos=rint(fromBARK((float)(i+1))*2*n/crate);
float base=ref[i];
if(j<endpos){
float delta=(ref[i+1]-base)/(endpos-j);
for(;j<endpos && j<n;j++){
c[j]=base;
base+=delta;
}
}
}
}
static void min_curve(float *c,
float *c2){
int i;
for(i=0;i<EHMER_MAX;i++)if(c2[i]<c[i])c[i]=c2[i];
}
static void max_curve(float *c,
float *c2){
int i;
for(i=0;i<EHMER_MAX;i++)if(c2[i]>c[i])c[i]=c2[i];
}
static void attenuate_curve(float *c,float att){
int i;
for(i=0;i<EHMER_MAX;i++)
c[i]+=att;
}
static void interp_curve(float *c,float *c1,float *c2,float del){
int i;
for(i=0;i<EHMER_MAX;i++)
c[i]=c2[i]*del+c1[i]*(1.f-del);
}
extern int analysis_noisy;
static void setup_curve(float **c,
int band,
float *curveatt_dB){
int i,j;
float ath[EHMER_MAX];
float tempc[P_LEVELS][EHMER_MAX];
float *ATH=ATH_Bark_dB_lspconservative; /* just for limiting here */
memcpy(c[0]+2,c[4]+2,sizeof(*c[0])*EHMER_MAX);
memcpy(c[2]+2,c[4]+2,sizeof(*c[2])*EHMER_MAX);
/* we add back in the ATH to avoid low level curves falling off to
-infinity and unnecessarily cutting off high level curves in the
curve limiting (last step). But again, remember... a half-band's
settings must be valid over the whole band, and it's better to
mask too little than too much, so be pessimistical. */
for(i=0;i<EHMER_MAX;i++){
float oc_min=band*.5+(i-EHMER_OFFSET)*.125;
float oc_max=band*.5+(i-EHMER_OFFSET+1)*.125;
float bark=toBARK(fromOC(oc_min));
int ibark=floor(bark);
float del=bark-ibark;
float ath_min,ath_max;
if(ibark<26)
ath_min=ATH[ibark]*(1.f-del)+ATH[ibark+1]*del;
else
ath_min=ATH[25];
bark=toBARK(fromOC(oc_max));
ibark=floor(bark);
del=bark-ibark;
if(ibark<26)
ath_max=ATH[ibark]*(1.f-del)+ATH[ibark+1]*del;
else
ath_max=ATH[25];
ath[i]=min(ath_min,ath_max);
}
/* The c array comes in as dB curves at 20 40 60 80 100 dB.
interpolate intermediate dB curves */
for(i=1;i<P_LEVELS;i+=2){
interp_curve(c[i]+2,c[i-1]+2,c[i+1]+2,.5);
}
/* normalize curves so the driving amplitude is 0dB */
/* make temp curves with the ATH overlayed */
for(i=0;i<P_LEVELS;i++){
attenuate_curve(c[i]+2,curveatt_dB[i]);
memcpy(tempc[i],ath,EHMER_MAX*sizeof(*tempc[i]));
attenuate_curve(tempc[i],-i*10.f);
max_curve(tempc[i],c[i]+2);
}
/* Now limit the louder curves.
the idea is this: We don't know what the playback attenuation
will be; 0dB SL moves every time the user twiddles the volume
knob. So that means we have to use a single 'most pessimal' curve
for all masking amplitudes, right? Wrong. The *loudest* sound
can be in (we assume) a range of ...+100dB] SL. However, sounds
20dB down will be in a range ...+80], 40dB down is from ...+60],
etc... */
for(j=1;j<P_LEVELS;j++){
min_curve(tempc[j],tempc[j-1]);
min_curve(c[j]+2,tempc[j]);
}
/* add fenceposts */
for(j=0;j<P_LEVELS;j++){
for(i=0;i<EHMER_OFFSET;i++)
if(c[j][i+2]>-200.f)break;
c[j][0]=i;
for(i=EHMER_MAX-1;i>EHMER_OFFSET+1;i--)
if(c[j][i+2]>-200.f)
break;
c[j][1]=i;
}
}
void _vp_psy_init(vorbis_look_psy *p,vorbis_info_psy *vi,
vorbis_info_psy_global *gi,int n,long rate){
long i,j,k,lo=-99,hi=0;
long maxoc;
memset(p,0,sizeof(*p));
p->eighth_octave_lines=gi->eighth_octave_lines;
p->shiftoc=rint(log(gi->eighth_octave_lines*8.f)/log(2.f))-1;
p->firstoc=toOC(.25f*rate/n)*(1<<(p->shiftoc+1))-gi->eighth_octave_lines;
maxoc=toOC((n*.5f-.25f)*rate/n)*(1<<(p->shiftoc+1))+.5f;
p->total_octave_lines=maxoc-p->firstoc+1;
if(vi->ath)
p->ath=_ogg_malloc(n*sizeof(*p->ath));
p->octave=_ogg_malloc(n*sizeof(*p->octave));
p->bark=_ogg_malloc(n*sizeof(*p->bark));
p->vi=vi;
p->n=n;
p->rate=rate;
/* set up the lookups for a given blocksize and sample rate */
if(vi->ath)
set_curve(vi->ath, p->ath,n,(float)rate);
for(i=0;i<n;i++){
float bark=toBARK(rate/(2*n)*i);
for(;lo+vi->noisewindowlomin<i &&
toBARK(rate/(2*n)*lo)<(bark-vi->noisewindowlo);lo++);
for(;hi<n && (hi<i+vi->noisewindowhimin ||
toBARK(rate/(2*n)*hi)<(bark+vi->noisewindowhi));hi++);
p->bark[i]=(lo<<16)+hi;
}
for(i=0;i<n;i++)
p->octave[i]=toOC((i*.5f+.25f)*rate/n)*(1<<(p->shiftoc+1))+.5f;
p->tonecurves=_ogg_malloc(P_BANDS*sizeof(*p->tonecurves));
p->noisethresh=_ogg_malloc(n*sizeof(*p->noisethresh));
p->noiseoffset=_ogg_malloc(n*sizeof(*p->noiseoffset));
for(i=0;i<P_BANDS;i++)
p->tonecurves[i]=_ogg_malloc(P_LEVELS*sizeof(*p->tonecurves[i]));
for(i=0;i<P_BANDS;i++)
for(j=0;j<P_LEVELS;j++)
p->tonecurves[i][j]=_ogg_malloc((EHMER_MAX+2)*sizeof(*p->tonecurves[i][j]));
/* OK, yeah, this was a silly way to do it */
memcpy(p->tonecurves[0][4]+2,tone_125_40dB_SL,sizeof(*p->tonecurves[0][4])*EHMER_MAX);
memcpy(p->tonecurves[0][6]+2,tone_125_60dB_SL,sizeof(*p->tonecurves[0][6])*EHMER_MAX);
memcpy(p->tonecurves[0][8]+2,tone_125_80dB_SL,sizeof(*p->tonecurves[0][8])*EHMER_MAX);
memcpy(p->tonecurves[0][10]+2,tone_125_100dB_SL,sizeof(*p->tonecurves[0][10])*EHMER_MAX);
memcpy(p->tonecurves[2][4]+2,tone_125_40dB_SL,sizeof(*p->tonecurves[2][4])*EHMER_MAX);
memcpy(p->tonecurves[2][6]+2,tone_125_60dB_SL,sizeof(*p->tonecurves[2][6])*EHMER_MAX);
memcpy(p->tonecurves[2][8]+2,tone_125_80dB_SL,sizeof(*p->tonecurves[2][8])*EHMER_MAX);
memcpy(p->tonecurves[2][10]+2,tone_125_100dB_SL,sizeof(*p->tonecurves[2][10])*EHMER_MAX);
memcpy(p->tonecurves[4][4]+2,tone_250_40dB_SL,sizeof(*p->tonecurves[4][4])*EHMER_MAX);
memcpy(p->tonecurves[4][6]+2,tone_250_60dB_SL,sizeof(*p->tonecurves[4][6])*EHMER_MAX);
memcpy(p->tonecurves[4][8]+2,tone_250_80dB_SL,sizeof(*p->tonecurves[4][8])*EHMER_MAX);
memcpy(p->tonecurves[4][10]+2,tone_250_100dB_SL,sizeof(*p->tonecurves[4][10])*EHMER_MAX);
memcpy(p->tonecurves[6][4]+2,tone_500_40dB_SL,sizeof(*p->tonecurves[6][4])*EHMER_MAX);
memcpy(p->tonecurves[6][6]+2,tone_500_60dB_SL,sizeof(*p->tonecurves[6][6])*EHMER_MAX);
memcpy(p->tonecurves[6][8]+2,tone_500_80dB_SL,sizeof(*p->tonecurves[6][8])*EHMER_MAX);
memcpy(p->tonecurves[6][10]+2,tone_500_100dB_SL,sizeof(*p->tonecurves[6][10])*EHMER_MAX);
memcpy(p->tonecurves[8][4]+2,tone_1000_40dB_SL,sizeof(*p->tonecurves[8][4])*EHMER_MAX);
memcpy(p->tonecurves[8][6]+2,tone_1000_60dB_SL,sizeof(*p->tonecurves[8][6])*EHMER_MAX);
memcpy(p->tonecurves[8][8]+2,tone_1000_80dB_SL,sizeof(*p->tonecurves[8][8])*EHMER_MAX);
memcpy(p->tonecurves[8][10]+2,tone_1000_100dB_SL,sizeof(*p->tonecurves[8][10])*EHMER_MAX);
memcpy(p->tonecurves[10][4]+2,tone_2000_40dB_SL,sizeof(*p->tonecurves[10][4])*EHMER_MAX);
memcpy(p->tonecurves[10][6]+2,tone_2000_60dB_SL,sizeof(*p->tonecurves[10][6])*EHMER_MAX);
memcpy(p->tonecurves[10][8]+2,tone_2000_80dB_SL,sizeof(*p->tonecurves[10][8])*EHMER_MAX);
memcpy(p->tonecurves[10][10]+2,tone_2000_100dB_SL,sizeof(*p->tonecurves[10][10])*EHMER_MAX);
memcpy(p->tonecurves[12][4]+2,tone_4000_40dB_SL,sizeof(*p->tonecurves[12][4])*EHMER_MAX);
memcpy(p->tonecurves[12][6]+2,tone_4000_60dB_SL,sizeof(*p->tonecurves[12][6])*EHMER_MAX);
memcpy(p->tonecurves[12][8]+2,tone_4000_80dB_SL,sizeof(*p->tonecurves[12][8])*EHMER_MAX);
memcpy(p->tonecurves[12][10]+2,tone_4000_100dB_SL,sizeof(*p->tonecurves[12][10])*EHMER_MAX);
memcpy(p->tonecurves[14][4]+2,tone_8000_40dB_SL,sizeof(*p->tonecurves[14][4])*EHMER_MAX);
memcpy(p->tonecurves[14][6]+2,tone_8000_60dB_SL,sizeof(*p->tonecurves[14][6])*EHMER_MAX);
memcpy(p->tonecurves[14][8]+2,tone_8000_80dB_SL,sizeof(*p->tonecurves[14][8])*EHMER_MAX);
memcpy(p->tonecurves[14][10]+2,tone_8000_100dB_SL,sizeof(*p->tonecurves[14][10])*EHMER_MAX);
memcpy(p->tonecurves[16][4]+2,tone_16000_40dB_SL,sizeof(*p->tonecurves[16][4])*EHMER_MAX);
memcpy(p->tonecurves[16][6]+2,tone_16000_60dB_SL,sizeof(*p->tonecurves[16][6])*EHMER_MAX);
memcpy(p->tonecurves[16][8]+2,tone_16000_80dB_SL,sizeof(*p->tonecurves[16][8])*EHMER_MAX);
memcpy(p->tonecurves[16][10]+2,tone_16000_100dB_SL,sizeof(*p->tonecurves[16][10])*EHMER_MAX);
for(i=0;i<P_BANDS;i+=2)
for(j=4;j<P_LEVELS;j+=2)
for(k=2;k<EHMER_MAX+2;k++)
p->tonecurves[i][j][k]+=vi->tone_masteratt;
/* interpolate curves between */
for(i=1;i<P_BANDS;i+=2)
for(j=4;j<P_LEVELS;j+=2){
memcpy(p->tonecurves[i][j]+2,p->tonecurves[i-1][j]+2,EHMER_MAX*sizeof(*p->tonecurves[i][j]));
/*interp_curve(p->tonecurves[i][j],
p->tonecurves[i-1][j],
p->tonecurves[i+1][j],.5);*/
min_curve(p->tonecurves[i][j]+2,p->tonecurves[i+1][j]+2);
}
/* set up the final curves */
for(i=0;i<P_BANDS;i++)
setup_curve(p->tonecurves[i],i,vi->toneatt.block[i]);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_63Hz",i,p->tonecurves[0][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_88Hz",i,p->tonecurves[1][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_125Hz",i,p->tonecurves[2][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_170Hz",i,p->tonecurves[3][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_250Hz",i,p->tonecurves[4][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_350Hz",i,p->tonecurves[5][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_500Hz",i,p->tonecurves[6][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_700Hz",i,p->tonecurves[7][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_1kHz",i,p->tonecurves[8][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_1.4Hz",i,p->tonecurves[9][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_2kHz",i,p->tonecurves[10][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_2.4kHz",i,p->tonecurves[11][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_4kHz",i,p->tonecurves[12][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_5.6kHz",i,p->tonecurves[13][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_8kHz",i,p->tonecurves[14][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_11.5kHz",i,p->tonecurves[15][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("curve_16kHz",i,p->tonecurves[16][i]+2,EHMER_MAX,0,0);
if(vi->curvelimitp){
/* value limit the tonal masking curves; the peakatt not only
optionally specifies maximum dynamic depth, but also
limits the masking curves to a minimum depth */
for(i=0;i<P_BANDS;i++)
for(j=0;j<P_LEVELS;j++){
for(k=2;k<EHMER_OFFSET+2+vi->curvelimitp;k++)
if(p->tonecurves[i][j][k]> vi->peakatt.block[i][j])
p->tonecurves[i][j][k]= vi->peakatt.block[i][j];
else
break;
}
}
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_63Hz",i,p->tonecurves[0][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_88Hz",i,p->tonecurves[1][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_125Hz",i,p->tonecurves[2][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_170Hz",i,p->tonecurves[3][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_250Hz",i,p->tonecurves[4][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_350Hz",i,p->tonecurves[5][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_500Hz",i,p->tonecurves[6][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_700Hz",i,p->tonecurves[7][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_1kHz",i,p->tonecurves[8][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_1.4Hz",i,p->tonecurves[9][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_2kHz",i,p->tonecurves[10][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_2.4kHz",i,p->tonecurves[11][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_4kHz",i,p->tonecurves[12][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_5.6kHz",i,p->tonecurves[13][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_8kHz",i,p->tonecurves[14][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_11.5kHz",i,p->tonecurves[15][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("licurve_16kHz",i,p->tonecurves[16][i]+2,EHMER_MAX,0,0);
if(vi->peakattp) /* we limit maximum depth only optionally */
for(i=0;i<P_BANDS;i++)
for(j=0;j<P_LEVELS;j++)
if(p->tonecurves[i][j][EHMER_OFFSET+2]< vi->peakatt.block[i][j])
p->tonecurves[i][j][EHMER_OFFSET+2]= vi->peakatt.block[i][j];
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_63Hz",i,p->tonecurves[0][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_88Hz",i,p->tonecurves[1][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_125Hz",i,p->tonecurves[2][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_170Hz",i,p->tonecurves[3][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_250Hz",i,p->tonecurves[4][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_350Hz",i,p->tonecurves[5][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_500Hz",i,p->tonecurves[6][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_700Hz",i,p->tonecurves[7][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_1kHz",i,p->tonecurves[8][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_1.4Hz",i,p->tonecurves[9][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_2kHz",i,p->tonecurves[10][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_2.4kHz",i,p->tonecurves[11][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_4kHz",i,p->tonecurves[12][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_5.6kHz",i,p->tonecurves[13][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_8kHz",i,p->tonecurves[14][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_11.5kHz",i,p->tonecurves[15][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("pcurve_16kHz",i,p->tonecurves[16][i]+2,EHMER_MAX,0,0);
/* but guarding is mandatory */
for(i=0;i<P_BANDS;i++)
for(j=0;j<P_LEVELS;j++)
if(p->tonecurves[i][j][EHMER_OFFSET+2]< vi->tone_guard)
p->tonecurves[i][j][EHMER_OFFSET+2]= vi->tone_guard;
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_63Hz",i,p->tonecurves[0][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_88Hz",i,p->tonecurves[1][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_125Hz",i,p->tonecurves[2][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_170Hz",i,p->tonecurves[3][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_250Hz",i,p->tonecurves[4][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_350Hz",i,p->tonecurves[5][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_500Hz",i,p->tonecurves[6][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_700Hz",i,p->tonecurves[7][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_1kHz",i,p->tonecurves[8][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_1.4Hz",i,p->tonecurves[9][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_2kHz",i,p->tonecurves[10][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_2.4kHz",i,p->tonecurves[11][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_4kHz",i,p->tonecurves[12][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_5.6kHz",i,p->tonecurves[13][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_8kHz",i,p->tonecurves[14][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_11.5kHz",i,p->tonecurves[15][i]+2,EHMER_MAX,0,0);
for(i=0;i<P_LEVELS;i++)
_analysis_output("fcurve_16kHz",i,p->tonecurves[16][i]+2,EHMER_MAX,0,0);
/* set up rolling noise median */
for(i=0;i<n;i++){
float halfoc=toOC((i+.5)*rate/(2.*n))*2.;
int inthalfoc;
float del;
if(halfoc<0)halfoc=0;
if(halfoc>=P_BANDS-1)halfoc=P_BANDS-1;
inthalfoc=(int)halfoc;
del=halfoc-inthalfoc;
p->noiseoffset[i]=
p->vi->noiseoff[inthalfoc]*(1.-del) +
p->vi->noiseoff[inthalfoc+1]*del;
}
analysis_noisy=1;
_analysis_output("noiseoff",0,p->noiseoffset,n,1,0);
_analysis_output("noisethresh",0,p->noisethresh,n,1,0);
analysis_noisy=1;
}
void _vp_psy_clear(vorbis_look_psy *p){
int i,j;
if(p){
if(p->ath)_ogg_free(p->ath);
if(p->octave)_ogg_free(p->octave);
if(p->bark)_ogg_free(p->bark);
if(p->tonecurves){
for(i=0;i<P_BANDS;i++){
for(j=0;j<P_LEVELS;j++){
_ogg_free(p->tonecurves[i][j]);
}
_ogg_free(p->tonecurves[i]);
}
_ogg_free(p->tonecurves);
}
_ogg_free(p->noiseoffset);
_ogg_free(p->noisethresh);
memset(p,0,sizeof(*p));
}
}
/* octave/(8*eighth_octave_lines) x scale and dB y scale */
static void seed_curve(float *seed,
const float **curves,
float amp,
int oc, int n,
int linesper,float dBoffset){
int i,post1;
int seedptr;
const float *posts,*curve;
int choice=(int)((amp+dBoffset)*.1f);
choice=max(choice,0);
choice=min(choice,P_LEVELS-1);
posts=curves[choice];
curve=posts+2;
post1=(int)posts[1];
seedptr=oc+(posts[0]-16)*linesper-(linesper>>1);
for(i=posts[0];i<post1;i++){
if(seedptr>0){
float lin=amp+curve[i];
if(seed[seedptr]<lin)seed[seedptr]=lin;
}
seedptr+=linesper;
if(seedptr>=n)break;
}
}
static void seed_loop(vorbis_look_psy *p,
const float ***curves,
const float *f,
const float *flr,
float *seed,
float specmax){
vorbis_info_psy *vi=p->vi;
long n=p->n,i;
float dBoffset=vi->max_curve_dB-specmax;
/* prime the working vector with peak values */
for(i=0;i<n;i++){
float max=f[i];
long oc=p->octave[i];
while(i+1<n && p->octave[i+1]==oc){
i++;
if(f[i]>max)max=f[i];
}
if(max+6.f>flr[i]){
oc=oc>>p->shiftoc;
if(oc>=P_BANDS)oc=P_BANDS-1;
if(oc<0)oc=0;
seed_curve(seed,
curves[oc],
max,
p->octave[i]-p->firstoc,
p->total_octave_lines,
p->eighth_octave_lines,
dBoffset);
}
}
}
static void seed_chase(float *seeds, int linesper, long n){
long *posstack=alloca(n*sizeof(*posstack));
float *ampstack=alloca(n*sizeof(*ampstack));
long stack=0;
long pos=0;
long i;
for(i=0;i<n;i++){
if(stack<2){
posstack[stack]=i;
ampstack[stack++]=seeds[i];
}else{
while(1){
if(seeds[i]<ampstack[stack-1]){
posstack[stack]=i;
ampstack[stack++]=seeds[i];
break;
}else{
if(i<posstack[stack-1]+linesper){
if(stack>1 && ampstack[stack-1]<=ampstack[stack-2] &&
i<posstack[stack-2]+linesper){
/* we completely overlap, making stack-1 irrelevant. pop it */
stack--;
continue;
}
}
posstack[stack]=i;
ampstack[stack++]=seeds[i];
break;
}
}
}
}
/* the stack now contains only the positions that are relevant. Scan
'em straight through */
for(i=0;i<stack;i++){
long endpos;
if(i<stack-1 && ampstack[i+1]>ampstack[i]){
endpos=posstack[i+1];
}else{
endpos=posstack[i]+linesper+1; /* +1 is important, else bin 0 is
discarded in short frames */
}
if(endpos>n)endpos=n;
for(;pos<endpos;pos++)
seeds[pos]=ampstack[i];
}
/* there. Linear time. I now remember this was on a problem set I
had in Grad Skool... I didn't solve it at the time ;-) */
}
/* bleaugh, this is more complicated than it needs to be */
static void max_seeds(vorbis_look_psy *p,
float *seed,
float *flr){
long n=p->total_octave_lines;
int linesper=p->eighth_octave_lines;
long linpos=0;
long pos;
seed_chase(seed,linesper,n); /* for masking */
pos=p->octave[0]-p->firstoc-(linesper>>1);
while(linpos+1<p->n){
float minV=seed[pos];
long end=((p->octave[linpos]+p->octave[linpos+1])>>1)-p->firstoc;
if(minV>p->vi->tone_abs_limit)minV=p->vi->tone_abs_limit;
while(pos+1<=end){
pos++;
if((seed[pos]>NEGINF && seed[pos]<minV) || minV==NEGINF)
minV=seed[pos];
}
/* seed scale is log. Floor is linear. Map back to it */
end=pos+p->firstoc;
for(;linpos<p->n && p->octave[linpos]<=end;linpos++)
if(flr[linpos]<minV)flr[linpos]=minV;
}
{
float minV=seed[p->total_octave_lines-1];
for(;linpos<p->n;linpos++)
if(flr[linpos]<minV)flr[linpos]=minV;
}
}
static void bark_noise_hybridmp(int n,const long *b,
const float *f,
float *noise,
const float offset,
const int fixed){
long i,hi=b[0]>>16,lo=b[0]>>16,hif=0,lof=0;
double xa=0,xb=0;
double ya=0,yb=0;
double x2a=0,x2b=0;
double xya=0,xyb=0;
double na=0,nb=0;
for(i=0;i<n;i++){
if(hi<n){
/* find new lo/hi */
int bi=b[i]&0xffffL;
for(;hi<bi;hi++){
int ii=(hi<0?-hi:hi);
double bin=(f[ii]<-offset?1.:f[ii]+offset);
double nn= bin*bin;
na += nn;
xa += hi*nn;
ya += bin*nn;
x2a += hi*hi*nn;
xya += hi*bin*nn;
}
bi=b[i]>>16;
for(;lo<bi;lo++){
int ii=(lo<0?-lo:lo);
double bin=(f[ii]<-offset?1.:f[ii]+offset);
double nn= bin*bin;
na -= nn;
xa -= lo*nn;
ya -= bin*nn;
x2a -= lo*lo*nn;
xya -= lo*bin*nn;
}
}
if(hif<n && fixed>0){
int bi=i+fixed/2;
if(bi>n)bi=n;
for(;hif<bi;hif++){
int ii=(hif<0?-hif:hif);
double bin=(f[ii]<-offset?1.:f[ii]+offset);
double nn= bin*bin;
nb += nn;
xb += hif*nn;
yb += bin*nn;
x2b += hif*hif*nn;
xyb += hif*bin*nn;
}
bi=i-(fixed+1)/2;
for(;lof<bi;lof++){
int ii=(lof<0?-lof:lof);
double bin=(f[ii]<-offset?1.:f[ii]+offset);
double nn= bin*bin;
nb -= nn;
xb -= lof*nn;
yb -= bin*nn;
x2b -= lof*lof*nn;
xyb -= lof*bin*nn;
}
}
{
double va=0.f;
if(na>2){
double denom=1./(na*x2a-xa*xa);
double a=(ya*x2a-xya*xa)*denom;
double b=(na*xya-xa*ya)*denom;
va=a+b*i;
}
if(va<0.)va=0.;
if(fixed>0){
double vb=0.f;
if(nb>2){
double denomf=1./(nb*x2b-xb*xb);
double af=(yb*x2b-xyb*xb)*denomf;
double bf=(nb*xyb-xb*yb)*denomf;
vb=af+bf*i;
}
if(vb<0.)vb=0.;
if(va>vb && vb>0.)va=vb;
}
noise[i]=va-offset;
}
}
}
void _vp_remove_floor(vorbis_look_psy *p,
float *mdct,
float *codedflr,
float *residue){
int i,n=p->n;
for(i=0;i<n;i++)
if(mdct[i]!=0.f)
residue[i]=mdct[i]/codedflr[i];
else
residue[i]=0.f;
}
void _vp_compute_mask(vorbis_look_psy *p,
float *logfft,
float *logmdct,
float *logmask,
float global_specmax,
float local_specmax,
float bitrate_noise_offset){
int i,n=p->n;
static int seq=0;
float *seed=alloca(sizeof(*seed)*p->total_octave_lines);
for(i=0;i<p->total_octave_lines;i++)seed[i]=NEGINF;
/* noise masking */
if(p->vi->noisemaskp){
float *work=alloca(n*sizeof(*work));
bark_noise_hybridmp(n,p->bark,logmdct,logmask,
140.,-1);
for(i=0;i<n;i++)work[i]=logmdct[i]-logmask[i];
bark_noise_hybridmp(n,p->bark,work,logmask,0.,
p->vi->noisewindowfixed);
for(i=0;i<n;i++)work[i]=logmdct[i]-work[i];
/* work[i] holds the median line (.5), logmask holds the upper
envelope line (1.) */
_analysis_output("noisemedian",seq,work,n,1,0);
for(i=0;i<n;i++)logmask[i]+=work[i];
_analysis_output("noiseenvelope",seq,logmask,n,1,0);
for(i=0;i<n;i++)logmask[i]-=work[i];
for(i=0;i<n;i++){
int dB=logmask[i]+.5;
if(dB>=NOISE_COMPAND_LEVELS)dB=NOISE_COMPAND_LEVELS-1;
logmask[i]= work[i]+p->vi->noisecompand[dB]+p->noiseoffset[i]+bitrate_noise_offset;
if(logmask[i]>p->vi->noisemaxsupp)logmask[i]=p->vi->noisemaxsupp;
}
_analysis_output("noise",seq,logmask,n,1,0);
}else{
for(i=0;i<n;i++)logmask[i]=NEGINF;
}
/* set the ATH (floating below localmax, not global max by a
specified att) */
if(p->vi->ath){
float att=local_specmax+p->vi->ath_adjatt;
if(att<p->vi->ath_maxatt)att=p->vi->ath_maxatt;
for(i=0;i<n;i++){
float av=p->ath[i]+att;
if(av>logmask[i])logmask[i]=av;
}
}
/* tone masking */
seed_loop(p,(const float ***)p->tonecurves,logfft,logmask,seed,global_specmax);
max_seeds(p,seed,logmask);
/* doing this here is clean, but we need to find a faster way to do
it than to just tack it on */
for(i=0;i<n;i++)if(logmdct[i]>=logmask[i])break;
if(i==n)
for(i=0;i<n;i++)logmask[i]=NEGINF;
else
for(i=0;i<n;i++)
logfft[i]=max(logmdct[i],logfft[i]);
seq++;
}
float _vp_ampmax_decay(float amp,vorbis_dsp_state *vd){
vorbis_info *vi=vd->vi;
codec_setup_info *ci=vi->codec_setup;
vorbis_info_psy_global *gi=&ci->psy_g_param;
int n=ci->blocksizes[vd->W]/2;
float secs=(float)n/vi->rate;
amp+=secs*gi->ampmax_att_per_sec;
if(amp<-9999)amp=-9999;
return(amp);
}
static void couple_lossless(float A, float B,
float granule,float igranule,
float *mag, float *ang,
int flip_p){
if(fabs(A)>fabs(B)){
A=rint(A*igranule)*granule; /* must be done *after* the comparison */
B=rint(B*igranule)*granule;
*mag=A; *ang=(A>0.f?A-B:B-A);
}else{
A=rint(A*igranule)*granule;
B=rint(B*igranule)*granule;
*mag=B; *ang=(B>0.f?A-B:B-A);
}
if(flip_p && *ang>fabs(*mag)*1.9999f){
*ang= -fabs(*mag)*2.f;
*mag= -*mag;
}
}
static void couple_point(float A, float B, float fA, float fB,
float granule,float igranule,
float fmag, float *mag, float *ang){
float origmag=FAST_HYPOT(A*fA,B*fB),corr;
if(fmag!=0.f){
if(fabs(A)>fabs(B)){
*mag=A;
}else{
*mag=B;
}
corr=origmag/FAST_HYPOT(fmag*fA,fmag*fB);
*mag=rint(*mag*corr*igranule)*granule;
*ang=0.f;
}else{
*mag=0.f;
*ang=0.f;
}
}
void _vp_quantize_couple(vorbis_look_psy *p,
vorbis_info_mapping0 *vi,
float **pcm,
float **sofar,
float **quantized,
int *nonzero,
int passno){
int i,j,k,n=p->n;
vorbis_info_psy *info=p->vi;
/* perform any requested channel coupling */
for(i=0;i<vi->coupling_steps;i++){
float granulem=info->couple_pass[passno].granulem;
float igranulem=info->couple_pass[passno].igranulem;
/* make sure coupling a zero and a nonzero channel results in two
nonzero channels. */
if(nonzero[vi->coupling_mag[i]] ||
nonzero[vi->coupling_ang[i]]){
float *pcmM=pcm[vi->coupling_mag[i]];
float *pcmA=pcm[vi->coupling_ang[i]];
float *floorM=pcm[vi->coupling_mag[i]]+n;
float *floorA=pcm[vi->coupling_ang[i]]+n;
float *sofarM=sofar[vi->coupling_mag[i]];
float *sofarA=sofar[vi->coupling_ang[i]];
float *qM=quantized[vi->coupling_mag[i]];
float *qA=quantized[vi->coupling_ang[i]];
nonzero[vi->coupling_mag[i]]=1;
nonzero[vi->coupling_ang[i]]=1;
for(j=0,k=0;j<n;k++){
vp_couple *part=info->couple_pass[passno].couple_pass+k;
float rqlimit=part->outofphase_requant_limit;
int flip_p=part->outofphase_redundant_flip_p;
for(;j<part->limit && j<p->n;j++){
/* partition by partition; k is our by-location partition
class counter */
float ang,mag,fmag=max(fabs(pcmM[j]),fabs(pcmA[j]));
if(fmag<part->amppost_point){
couple_point(pcmM[j],pcmA[j],floorM[j],floorA[j],
granulem,igranulem,fmag,&mag,&ang);
}else{
couple_lossless(pcmM[j],pcmA[j],
granulem,igranulem,&mag,&ang,flip_p);
}
/* executive decision time: when requantizing and recoupling
residue in order to progressively encode at finer
resolution, an out of phase component that originally
quntized to 2*mag can flip flop magnitude/angle if it
requantizes to not-quite out of phase. If that happens,
we opt not to fill in additional resolution (in order to
simplify the iterative codebook design and
efficiency). */
qM[j]=mag-sofarM[j];
qA[j]=ang-sofarA[j];
if(qA[j]<-rqlimit || qA[j]>rqlimit){
qM[j]=0.f;
qA[j]=0.f;
}
}
}
}
}
}
|