1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/>
<title>Ogg Vorbis Documentation</title>
<style type="text/css">
body {
margin: 0 18px 0 18px;
padding-bottom: 30px;
font-family: Verdana, Arial, Helvetica, sans-serif;
color: #333333;
font-size: .8em;
}
a {
color: #3366cc;
}
img {
border: 0;
}
#xiphlogo {
margin: 30px 0 16px 0;
}
#content p {
line-height: 1.4;
}
h1, h1 a, h2, h2 a, h3, h3 a {
font-weight: bold;
color: #ff9900;
margin: 1.3em 0 8px 0;
}
h1 {
font-size: 1.3em;
}
h2 {
font-size: 1.2em;
}
h3 {
font-size: 1.1em;
}
li {
line-height: 1.4;
}
#copyright {
margin-top: 30px;
line-height: 1.5em;
text-align: center;
font-size: .8em;
color: #888888;
clear: both;
}
</style>
</head>
<body>
<div id="xiphlogo">
<a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.Org"/></a>
</div>
<h1>Ogg Vorbis encoding format documentation</h1>
<p><img src="wait.png" alt="wait"/>As of writing, not all the below document
links are live. They will be populated as we complete the documents.</p>
<h2>Documents</h2>
<ul>
<li><a href="packet.html">Vorbis packet structure</a></li>
<li><a href="envelope.html">Temporal envelope shaping and blocksize</a></li>
<li><a href="mdct.html">Time domain segmentation and MDCT transform</a></li>
<li><a href="resolution.html">The resolution floor</a></li>
<li><a href="residuals.html">MDCT-domain fine structure</a></li>
</ul>
<ul>
<li><a href="probmodel.html">The Vorbis probability model</a></li>
<li><a href="bitpack.html">The Vorbis bitpacker</a></li>
</ul>
<ul>
<li><a href="oggstream.html">Ogg bitstream overview</a></li>
<li><a href="framing.html">Ogg logical bitstream and framing spec</a></li>
<li><a href="vorbis-stream.html">Vorbis packet->Ogg bitstream mapping</a></li>
</ul>
<ul>
<li><a href="programming.html">Programming with libvorbis</a></li>
</ul>
<h2>Description</h2>
<p>Ogg Vorbis is a general purpose compressed audio format
for high quality (44.1-48.0kHz, 16+ bit, polyphonic) audio and music
at moderate fixed and variable bitrates (40-80 kb/s/channel). This
places Vorbis in the same class as audio representations including
MPEG-1 audio layer 3, MPEG-4 audio (AAC and TwinVQ), and PAC.</p>
<p>Vorbis is the first of a planned family of Ogg multimedia coding
formats being developed as part of the Xiph.Org Foundation's Ogg multimedia
project. See <a href="http://www.xiph.org/">http://www.xiph.org/</a>
for more information.</p>
<h2>Vorbis technical documents</h2>
<p>A Vorbis encoder takes in overlapping (but contiguous) short-time
segments of audio data. The encoder analyzes the content of the audio
to determine an optimal compact representation; this phase of encoding
is known as <em>analysis</em>. For each short-time block of sound,
the encoder then packs an efficient representation of the signal, as
determined by analysis, into a raw packet much smaller than the size
required by the original signal; this phase is <em>coding</em>.
Lastly, in a streaming environment, the raw packets are then
structured into a continuous stream of octets; this last phase is
<em>streaming</em>. Note that the stream of octets is referred to both
as a 'byte-' and 'bit-'stream; the latter usage is acceptible as the
stream of octets is a physical representation of a true logical
bit-by-bit stream.</p>
<p>A Vorbis decoder performs a mirror image process of extracting the
original sequence of raw packets from an Ogg stream (<em>stream
decomposition</em>), reconstructing the signal representation from the
raw data in the packet (<em>decoding</em>) and them reconstituting an
audio signal from the decoded representation (<em>synthesis</em>).</p>
<p>The <a href="programming.html">Programming with libvorbis</a>
documents discuss use of the reference Vorbis codec library
(libvorbis) produced by the Xiph.Org Foundation.</p>
<p>The data representations and algorithms necessary at each step to
encode and decode Ogg Vorbis bitstreams are described by the below
documents in sufficient detail to construct a complete Vorbis codec.
Note that at the time of writing, Vorbis is still in a 'Request For
Comments' stage of development; despite being in advanced stages of
development, input from the multimedia community is welcome.</p>
<h3>Vorbis analysis and synthesis</h3>
<p>Analysis begins by seperating an input audio stream into individual,
overlapping short-time segments of audio data. These segments are
then transformed into an alternate representation, seeking to
represent the original signal in a more efficient form that codes into
a smaller number of bytes. The analysis and transformation stage is
the most complex element of producing a Vorbis bitstream.</p>
<p>The corresponding synthesis step in the decoder is simpler; there is
no analysis to perform, merely a mechanical, deterministic
reconstruction of the original audio data from the transform-domain
representation.</p>
<ul>
<li><a href="packet.html">Vorbis packet structure</a>:
Describes the basic analysis components necessary to produce Vorbis
packets and the structure of the packet itself.</li>
<li><a href="envelope.html">Temporal envelope shaping and blocksize</a>:
Use of temporal envelope shaping and variable blocksize to minimize
time-domain energy leakage during wide dynamic range and spectral energy
swings. Also discusses time-related principles of psychoacoustics.</li>
<li><a href="mdct.html">Time domain segmentation and MDCT transform</a>:
Division of time domain data into individual overlapped, windowed
short-time vectors and transformation using the MDCT</li>
<li><a href="resolution.html">The resolution floor</a>: Use of frequency
doamin psychoacoustics, and the MDCT-domain noise, masking and resolution
floors</li>
<li><a href="residuals.html">MDCT-domain fine structure</a>: Production,
quantization and massaging of MDCT-spectrum fine structure</li>
</ul>
<h3>Vorbis coding and decoding</h3>
<p>Coding and decoding converts the transform-domain representation of
the original audio produced by analysis to and from a bitwise packed
raw data packet. Coding and decoding consist of two logically
orthogonal concepts, <em>back-end coding</em> and <em>bitpacking</em>.</p>
<p><em>Back-end coding</em> uses a probability model to represent the raw numbers
of the audio representation in as few physical bits as possible;
familiar examples of back-end coding include Huffman coding and Vector
Quantization.</p>
<p><em>Bitpacking</em> arranges the variable sized words of the back-end
coding into a vector of octets without wasting space. The octets
produced by coding a single short-time audio segment is one raw Vorbis
packet.</p>
<ul>
<li><a href="probmodel.html">The Vorbis probability model</a></li>
<li><a href="bitpack.html">The Vorbis bitpacker</a>: Arrangement of
variable bit-length words into an octet-aligned packet.</li>
</ul>
<h3>Vorbis streaming and stream decomposition</h3>
<p>Vorbis packets contain the raw, bitwise-compressed representation of a
snippet of audio. These packets contain no structure and cannot be
strung together directly into a stream; for streamed transmission and
storage, Vorbis packets are encoded into an Ogg bitstream.</p>
<ul>
<li><a href="oggstream.html">Ogg bitstream overview</a>: High-level
description of Ogg logical bitstreams, how logical bitstreams
(of mixed media types) can be combined into physical bitstreams, and
restrictions on logical-to-physical mapping. Note that this document is
not specific only to Ogg Vorbis.</li>
<li><a href="framing.html">Ogg logical bitstream and framing
spec</a>: Low level, complete specification of Ogg logical
bitstream pages. Note that this document is not specific only to Ogg
Vorbis.</li>
<li><a href="vorbis-stream.html">Vorbis bitstream mapping</a>:
Specifically describes mapping Vorbis data into an
Ogg physical bitstream.</li>
</ul>
<div id="copyright">
The Xiph Fish Logo is a
trademark (™) of Xiph.Org.<br/>
These pages © 1994 - 2005 Xiph.Org. All rights reserved.
</div>
</body>
</html>
|