1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
## Copyright (c) 2020 The WebM project authors. All Rights Reserved.
##
## Use of this source code is governed by a BSD-style license
## that can be found in the LICENSE file in the root of the source
## tree. An additional intellectual property rights grant can be found
## in the file PATENTS. All contributing project authors may
## be found in the AUTHORS file in the root of the source tree.
##
# coding: utf-8
import numpy as np
import numpy.linalg as LA
from Util import MSE
from MotionEST import MotionEST
"""Search & Smooth Model with Adapt Weights"""
class SearchSmoothAdapt(MotionEST):
"""
Constructor:
cur_f: current frame
ref_f: reference frame
blk_sz: block size
wnd_size: search window size
beta: neigbor loss weight
max_iter: maximum number of iterations
metric: metric to compare the blocks distrotion
"""
def __init__(self, cur_f, ref_f, blk_size, search, max_iter=100):
self.search = search
self.max_iter = max_iter
super(SearchSmoothAdapt, self).__init__(cur_f, ref_f, blk_size)
"""
get local diffiencial of refernce
"""
def getRefLocalDiff(self, mvs):
m, n = self.num_row, self.num_col
localDiff = [[] for _ in xrange(m)]
blk_sz = self.blk_sz
for r in xrange(m):
for c in xrange(n):
I_row = 0
I_col = 0
#get ssd surface
count = 0
center = self.cur_yuv[r * blk_sz:(r + 1) * blk_sz,
c * blk_sz:(c + 1) * blk_sz, 0]
ty = np.clip(r * blk_sz + int(mvs[r, c, 0]), 0, self.height - blk_sz)
tx = np.clip(c * blk_sz + int(mvs[r, c, 1]), 0, self.width - blk_sz)
target = self.ref_yuv[ty:ty + blk_sz, tx:tx + blk_sz, 0]
for y, x in {(ty - blk_sz, tx), (ty + blk_sz, tx)}:
if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz:
nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0]
I_row += np.sum(np.abs(nb - center)) - np.sum(
np.abs(target - center))
count += 1
I_row //= (count * blk_sz * blk_sz)
count = 0
for y, x in {(ty, tx - blk_sz), (ty, tx + blk_sz)}:
if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz:
nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0]
I_col += np.sum(np.abs(nb - center)) - np.sum(
np.abs(target - center))
count += 1
I_col //= (count * blk_sz * blk_sz)
localDiff[r].append(
np.array([[I_row * I_row, I_row * I_col],
[I_col * I_row, I_col * I_col]]))
return localDiff
"""
add smooth constraint
"""
def smooth(self, uvs, mvs):
sm_uvs = np.zeros(uvs.shape)
blk_sz = self.blk_sz
for r in xrange(self.num_row):
for c in xrange(self.num_col):
nb_uv = np.array([0.0, 0.0])
for i, j in {(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)}:
if 0 <= i < self.num_row and 0 <= j < self.num_col:
nb_uv += uvs[i, j] / 6.0
else:
nb_uv += uvs[r, c] / 6.0
for i, j in {(r - 1, c - 1), (r - 1, c + 1), (r + 1, c - 1),
(r + 1, c + 1)}:
if 0 <= i < self.num_row and 0 <= j < self.num_col:
nb_uv += uvs[i, j] / 12.0
else:
nb_uv += uvs[r, c] / 12.0
ssd_nb = self.block_dist(r, c, self.blk_sz * nb_uv)
mv = mvs[r, c]
ssd_mv = self.block_dist(r, c, mv)
alpha = (ssd_nb - ssd_mv) / (ssd_mv + 1e-6)
M = alpha * self.localDiff[r][c]
P = M + np.identity(2)
inv_P = LA.inv(P)
sm_uvs[r, c] = np.dot(inv_P, nb_uv) + np.dot(
np.matmul(inv_P, M), mv / blk_sz)
return sm_uvs
def block_matching(self):
self.search.motion_field_estimation()
def motion_field_estimation(self):
self.localDiff = self.getRefLocalDiff(self.search.mf)
#get matching results
mvs = self.search.mf
#add smoothness constraint
uvs = mvs / self.blk_sz
for _ in xrange(self.max_iter):
uvs = self.smooth(uvs, mvs)
self.mf = uvs * self.blk_sz
"""Search & Smooth Model with Fixed Weights"""
class SearchSmoothFix(MotionEST):
"""
Constructor:
cur_f: current frame
ref_f: reference frame
blk_sz: block size
wnd_size: search window size
beta: neigbor loss weight
max_iter: maximum number of iterations
metric: metric to compare the blocks distrotion
"""
def __init__(self, cur_f, ref_f, blk_size, search, beta, max_iter=100):
self.search = search
self.max_iter = max_iter
self.beta = beta
super(SearchSmoothFix, self).__init__(cur_f, ref_f, blk_size)
"""
get local diffiencial of refernce
"""
def getRefLocalDiff(self, mvs):
m, n = self.num_row, self.num_col
localDiff = [[] for _ in xrange(m)]
blk_sz = self.blk_sz
for r in xrange(m):
for c in xrange(n):
I_row = 0
I_col = 0
#get ssd surface
count = 0
center = self.cur_yuv[r * blk_sz:(r + 1) * blk_sz,
c * blk_sz:(c + 1) * blk_sz, 0]
ty = np.clip(r * blk_sz + int(mvs[r, c, 0]), 0, self.height - blk_sz)
tx = np.clip(c * blk_sz + int(mvs[r, c, 1]), 0, self.width - blk_sz)
target = self.ref_yuv[ty:ty + blk_sz, tx:tx + blk_sz, 0]
for y, x in {(ty - blk_sz, tx), (ty + blk_sz, tx)}:
if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz:
nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0]
I_row += np.sum(np.abs(nb - center)) - np.sum(
np.abs(target - center))
count += 1
I_row //= (count * blk_sz * blk_sz)
count = 0
for y, x in {(ty, tx - blk_sz), (ty, tx + blk_sz)}:
if 0 <= y < self.height - blk_sz and 0 <= x < self.width - blk_sz:
nb = self.ref_yuv[y:y + blk_sz, x:x + blk_sz, 0]
I_col += np.sum(np.abs(nb - center)) - np.sum(
np.abs(target - center))
count += 1
I_col //= (count * blk_sz * blk_sz)
localDiff[r].append(
np.array([[I_row * I_row, I_row * I_col],
[I_col * I_row, I_col * I_col]]))
return localDiff
"""
add smooth constraint
"""
def smooth(self, uvs, mvs):
sm_uvs = np.zeros(uvs.shape)
blk_sz = self.blk_sz
for r in xrange(self.num_row):
for c in xrange(self.num_col):
nb_uv = np.array([0.0, 0.0])
for i, j in {(r - 1, c), (r + 1, c), (r, c - 1), (r, c + 1)}:
if 0 <= i < self.num_row and 0 <= j < self.num_col:
nb_uv += uvs[i, j] / 6.0
else:
nb_uv += uvs[r, c] / 6.0
for i, j in {(r - 1, c - 1), (r - 1, c + 1), (r + 1, c - 1),
(r + 1, c + 1)}:
if 0 <= i < self.num_row and 0 <= j < self.num_col:
nb_uv += uvs[i, j] / 12.0
else:
nb_uv += uvs[r, c] / 12.0
mv = mvs[r, c] / blk_sz
M = self.localDiff[r][c]
P = M + self.beta * np.identity(2)
inv_P = LA.inv(P)
sm_uvs[r, c] = np.dot(inv_P, self.beta * nb_uv) + np.dot(
np.matmul(inv_P, M), mv)
return sm_uvs
def block_matching(self):
self.search.motion_field_estimation()
def motion_field_estimation(self):
#get local structure
self.localDiff = self.getRefLocalDiff(self.search.mf)
#get matching results
mvs = self.search.mf
#add smoothness constraint
uvs = mvs / self.blk_sz
for _ in xrange(self.max_iter):
uvs = self.smooth(uvs, mvs)
self.mf = uvs * self.blk_sz
|