1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "error_concealment.h"
#include "onyxd_int.h"
#include "decodemv.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/common.h"
#include "vpx_dsp/vpx_dsp_common.h"
#define FLOOR(x, q) ((x) & -(1 << (q)))
#define NUM_NEIGHBORS 20
typedef struct ec_position {
int row;
int col;
} EC_POS;
/*
* Regenerate the table in Matlab with:
* x = meshgrid((1:4), (1:4));
* y = meshgrid((1:4), (1:4))';
* W = round((1./(sqrt(x.^2 + y.^2))*2^7));
* W(1,1) = 0;
*/
static const int weights_q7[5][5] = { { 0, 128, 64, 43, 32 },
{ 128, 91, 57, 40, 31 },
{ 64, 57, 45, 36, 29 },
{ 43, 40, 36, 30, 26 },
{ 32, 31, 29, 26, 23 } };
int vp8_alloc_overlap_lists(VP8D_COMP *pbi) {
if (pbi->overlaps != NULL) {
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
pbi->overlaps =
vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, sizeof(MB_OVERLAP));
if (pbi->overlaps == NULL) return -1;
return 0;
}
void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) {
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
/* Inserts a new overlap area value to the list of overlaps of a block */
static void assign_overlap(OVERLAP_NODE *overlaps, union b_mode_info *bmi,
int overlap) {
int i;
if (overlap <= 0) return;
/* Find and assign to the next empty overlap node in the list of overlaps.
* Empty is defined as bmi == NULL */
for (i = 0; i < MAX_OVERLAPS; ++i) {
if (overlaps[i].bmi == NULL) {
overlaps[i].bmi = bmi;
overlaps[i].overlap = overlap;
break;
}
}
}
/* Calculates the overlap area between two 4x4 squares, where the first
* square has its upper-left corner at (b1_row, b1_col) and the second
* square has its upper-left corner at (b2_row, b2_col). Doesn't
* properly handle squares which do not overlap.
*/
static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) {
const int int_top = VPXMAX(b1_row, b2_row); // top
const int int_left = VPXMAX(b1_col, b2_col); // left
/* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
* gives us the right/bottom edge.
*/
const int int_right = VPXMIN(b1_col + (4 << 3), b2_col + (4 << 3)); // right
const int int_bottom =
VPXMIN(b1_row + (4 << 3), b2_row + (4 << 3)); // bottom
return (int_bottom - int_top) * (int_right - int_left);
}
/* Calculates the overlap area for all blocks in a macroblock at position
* (mb_row, mb_col) in macroblocks, which are being overlapped by a given
* overlapping block at position (new_row, new_col) (in pixels, Q3). The
* first block being overlapped in the macroblock has position (first_blk_row,
* first_blk_col) in blocks relative the upper-left corner of the image.
*/
static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
int new_row, int new_col, int mb_row,
int mb_col, int first_blk_row,
int first_blk_col) {
/* Find the blocks within this MB (defined by mb_row, mb_col) which are
* overlapped by bmi and calculate and assign overlap for each of those
* blocks. */
/* Block coordinates relative the upper-left block */
const int rel_ol_blk_row = first_blk_row - mb_row * 4;
const int rel_ol_blk_col = first_blk_col - mb_col * 4;
/* If the block partly overlaps any previous MB, these coordinates
* can be < 0. We don't want to access blocks in previous MBs.
*/
const int blk_idx = VPXMAX(rel_ol_blk_row, 0) * 4 + VPXMAX(rel_ol_blk_col, 0);
/* Upper left overlapping block */
B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
/* Calculate and assign overlaps for all blocks in this MB
* which the motion compensated block overlaps
*/
/* Avoid calculating overlaps for blocks in later MBs */
int end_row = VPXMIN(4 + mb_row * 4 - first_blk_row, 2);
int end_col = VPXMIN(4 + mb_col * 4 - first_blk_col, 2);
int row, col;
/* Check if new_row and new_col are evenly divisible by 4 (Q3),
* and if so we shouldn't check neighboring blocks
*/
if (new_row >= 0 && (new_row & 0x1F) == 0) end_row = 1;
if (new_col >= 0 && (new_col & 0x1F) == 0) end_col = 1;
/* Check if the overlapping block partly overlaps a previous MB
* and if so, we're overlapping fewer blocks in this MB.
*/
if (new_row < (mb_row * 16) << 3) end_row = 1;
if (new_col < (mb_col * 16) << 3) end_col = 1;
for (row = 0; row < end_row; ++row) {
for (col = 0; col < end_col; ++col) {
/* input in Q3, result in Q6 */
const int overlap =
block_overlap(new_row, new_col, (((first_blk_row + row) * 4) << 3),
(((first_blk_col + col) * 4) << 3));
assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
}
}
}
static void calculate_overlaps(MB_OVERLAP *overlap_ul, int mb_rows, int mb_cols,
union b_mode_info *bmi, int b_row, int b_col) {
MB_OVERLAP *mb_overlap;
int row, col, rel_row, rel_col;
int new_row, new_col;
int end_row, end_col;
int overlap_b_row, overlap_b_col;
int overlap_mb_row, overlap_mb_col;
/* mb subpixel position */
row = (4 * b_row) << 3; /* Q3 */
col = (4 * b_col) << 3; /* Q3 */
/* reverse compensate for motion */
new_row = row - bmi->mv.as_mv.row;
new_col = col - bmi->mv.as_mv.col;
if (new_row >= ((16 * mb_rows) << 3) || new_col >= ((16 * mb_cols) << 3)) {
/* the new block ended up outside the frame */
return;
}
if (new_row <= -32 || new_col <= -32) {
/* outside the frame */
return;
}
/* overlapping block's position in blocks */
overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
/* overlapping block's MB position in MBs
* operations are done in Q3
*/
overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
end_row = VPXMIN(mb_rows - overlap_mb_row, 2);
end_col = VPXMIN(mb_cols - overlap_mb_col, 2);
/* Don't calculate overlap for MBs we don't overlap */
/* Check if the new block row starts at the last block row of the MB */
if (abs(new_row - ((16 * overlap_mb_row) << 3)) < ((3 * 4) << 3)) end_row = 1;
/* Check if the new block col starts at the last block col of the MB */
if (abs(new_col - ((16 * overlap_mb_col) << 3)) < ((3 * 4) << 3)) end_col = 1;
/* find the MB(s) this block is overlapping */
for (rel_row = 0; rel_row < end_row; ++rel_row) {
for (rel_col = 0; rel_col < end_col; ++rel_col) {
if (overlap_mb_row + rel_row < 0 || overlap_mb_col + rel_col < 0)
continue;
mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
overlap_mb_col + rel_col;
calculate_overlaps_mb(mb_overlap->overlaps, bmi, new_row, new_col,
overlap_mb_row + rel_row, overlap_mb_col + rel_col,
overlap_b_row + rel_row, overlap_b_col + rel_col);
}
}
}
/* Estimates a motion vector given the overlapping blocks' motion vectors.
* Filters out all overlapping blocks which do not refer to the correct
* reference frame type.
*/
static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) {
int i;
int overlap_sum = 0;
int row_acc = 0;
int col_acc = 0;
bmi->mv.as_int = 0;
for (i = 0; i < MAX_OVERLAPS; ++i) {
if (overlaps[i].bmi == NULL) break;
col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
overlap_sum += overlaps[i].overlap;
}
if (overlap_sum > 0) {
/* Q9 / Q6 = Q3 */
bmi->mv.as_mv.col = col_acc / overlap_sum;
bmi->mv.as_mv.row = row_acc / overlap_sum;
} else {
bmi->mv.as_mv.col = 0;
bmi->mv.as_mv.row = 0;
}
}
/* Estimates all motion vectors for a macroblock given the lists of
* overlaps for each block. Decides whether or not the MVs must be clamped.
*/
static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, MODE_INFO *mi,
int mb_to_left_edge, int mb_to_right_edge,
int mb_to_top_edge, int mb_to_bottom_edge) {
int row, col;
int non_zero_count = 0;
MV *const filtered_mv = &(mi->mbmi.mv.as_mv);
union b_mode_info *const bmi = mi->bmi;
filtered_mv->col = 0;
filtered_mv->row = 0;
mi->mbmi.need_to_clamp_mvs = 0;
for (row = 0; row < 4; ++row) {
int this_b_to_top_edge = mb_to_top_edge + ((row * 4) << 3);
int this_b_to_bottom_edge = mb_to_bottom_edge - ((row * 4) << 3);
for (col = 0; col < 4; ++col) {
int i = row * 4 + col;
int this_b_to_left_edge = mb_to_left_edge + ((col * 4) << 3);
int this_b_to_right_edge = mb_to_right_edge - ((col * 4) << 3);
/* Estimate vectors for all blocks which are overlapped by this */
/* type. Interpolate/extrapolate the rest of the block's MVs */
estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
&bmi[i].mv, this_b_to_left_edge, this_b_to_right_edge,
this_b_to_top_edge, this_b_to_bottom_edge);
if (bmi[i].mv.as_int != 0) {
++non_zero_count;
filtered_mv->col += bmi[i].mv.as_mv.col;
filtered_mv->row += bmi[i].mv.as_mv.row;
}
}
}
if (non_zero_count > 0) {
filtered_mv->col /= non_zero_count;
filtered_mv->row /= non_zero_count;
}
}
static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
int mb_row, int mb_col, int mb_rows,
int mb_cols) {
int sub_row;
int sub_col;
for (sub_row = 0; sub_row < 4; ++sub_row) {
for (sub_col = 0; sub_col < 4; ++sub_col) {
calculate_overlaps(overlaps, mb_rows, mb_cols,
&(prev_mi->bmi[sub_row * 4 + sub_col]),
4 * mb_row + sub_row, 4 * mb_col + sub_col);
}
}
}
/* Estimate all missing motion vectors. This function does the same as the one
* above, but has different input arguments. */
static void estimate_missing_mvs(MB_OVERLAP *overlaps, MODE_INFO *mi,
MODE_INFO *prev_mi, int mb_rows, int mb_cols,
unsigned int first_corrupt) {
int mb_row, mb_col;
memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
/* First calculate the overlaps for all blocks */
for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
/* We're only able to use blocks referring to the last frame
* when extrapolating new vectors.
*/
if (prev_mi->mbmi.ref_frame == LAST_FRAME) {
calc_prev_mb_overlaps(overlaps, prev_mi, mb_row, mb_col, mb_rows,
mb_cols);
}
++prev_mi;
}
++prev_mi;
}
mb_row = first_corrupt / mb_cols;
mb_col = first_corrupt - mb_row * mb_cols;
mi += mb_row * (mb_cols + 1) + mb_col;
/* Go through all macroblocks in the current image with missing MVs
* and calculate new MVs using the overlaps.
*/
for (; mb_row < mb_rows; ++mb_row) {
int mb_to_top_edge = -((mb_row * 16)) << 3;
int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
for (; mb_col < mb_cols; ++mb_col) {
int mb_to_left_edge = -((mb_col * 16) << 3);
int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
const B_OVERLAP *block_overlaps =
overlaps[mb_row * mb_cols + mb_col].overlaps;
mi->mbmi.ref_frame = LAST_FRAME;
mi->mbmi.mode = SPLITMV;
mi->mbmi.uv_mode = DC_PRED;
mi->mbmi.partitioning = 3;
mi->mbmi.segment_id = 0;
estimate_mb_mvs(block_overlaps, mi, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
++mi;
}
mb_col = 0;
++mi;
}
}
void vp8_estimate_missing_mvs(VP8D_COMP *pbi) {
VP8_COMMON *const pc = &pbi->common;
estimate_missing_mvs(pbi->overlaps, pc->mi, pc->prev_mi, pc->mb_rows,
pc->mb_cols, pbi->mvs_corrupt_from_mb);
}
static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) {
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
neighbor->ref_frame = mi->mbmi.ref_frame;
neighbor->mv = mi->bmi[block_idx].mv.as_mv;
}
/* Finds the neighboring blocks of a macroblocks. In the general case
* 20 blocks are found. If a fewer number of blocks are found due to
* image boundaries, those positions in the EC_BLOCK array are left "empty".
* The neighbors are enumerated with the upper-left neighbor as the first
* element, the second element refers to the neighbor to right of the previous
* neighbor, and so on. The last element refers to the neighbor below the first
* neighbor.
*/
static void find_neighboring_blocks(MODE_INFO *mi, EC_BLOCK *neighbors,
int mb_row, int mb_col, int mb_rows,
int mb_cols, int mi_stride) {
int i = 0;
int j;
if (mb_row > 0) {
/* upper left */
if (mb_col > 0) assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
++i;
/* above */
for (j = 12; j < 16; ++j, ++i)
assign_neighbor(&neighbors[i], mi - mi_stride, j);
} else
i += 5;
if (mb_col < mb_cols - 1) {
/* upper right */
if (mb_row > 0) assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
++i;
/* right */
for (j = 0; j <= 12; j += 4, ++i) assign_neighbor(&neighbors[i], mi + 1, j);
} else
i += 5;
if (mb_row < mb_rows - 1) {
/* lower right */
if (mb_col < mb_cols - 1)
assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
++i;
/* below */
for (j = 0; j < 4; ++j, ++i)
assign_neighbor(&neighbors[i], mi + mi_stride, j);
} else
i += 5;
if (mb_col > 0) {
/* lower left */
if (mb_row < mb_rows - 1)
assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
++i;
/* left */
for (j = 3; j < 16; j += 4, ++i) {
assign_neighbor(&neighbors[i], mi - 1, j);
}
} else
i += 5;
assert(i == 20);
}
/* Interpolates all motion vectors for a macroblock from the neighboring blocks'
* motion vectors.
*/
static void interpolate_mvs(MACROBLOCKD *mb, EC_BLOCK *neighbors,
MV_REFERENCE_FRAME dom_ref_frame) {
int row, col, i;
MODE_INFO *const mi = mb->mode_info_context;
/* Table with the position of the neighboring blocks relative the position
* of the upper left block of the current MB. Starting with the upper left
* neighbor and going to the right.
*/
const EC_POS neigh_pos[NUM_NEIGHBORS] = {
{ -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { -1, 3 }, { -1, 4 }, { 0, 4 },
{ 1, 4 }, { 2, 4 }, { 3, 4 }, { 4, 4 }, { 4, 3 }, { 4, 2 }, { 4, 1 },
{ 4, 0 }, { 4, -1 }, { 3, -1 }, { 2, -1 }, { 1, -1 }, { 0, -1 }
};
mi->mbmi.need_to_clamp_mvs = 0;
for (row = 0; row < 4; ++row) {
int mb_to_top_edge = mb->mb_to_top_edge + ((row * 4) << 3);
int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row * 4) << 3);
for (col = 0; col < 4; ++col) {
int mb_to_left_edge = mb->mb_to_left_edge + ((col * 4) << 3);
int mb_to_right_edge = mb->mb_to_right_edge - ((col * 4) << 3);
int w_sum = 0;
int mv_row_sum = 0;
int mv_col_sum = 0;
int_mv *const mv = &(mi->bmi[row * 4 + col].mv);
mv->as_int = 0;
for (i = 0; i < NUM_NEIGHBORS; ++i) {
/* Calculate the weighted sum of neighboring MVs referring
* to the dominant frame type.
*/
const int w = weights_q7[abs(row - neigh_pos[i].row)]
[abs(col - neigh_pos[i].col)];
if (neighbors[i].ref_frame != dom_ref_frame) continue;
w_sum += w;
/* Q7 * Q3 = Q10 */
mv_row_sum += w * neighbors[i].mv.row;
mv_col_sum += w * neighbors[i].mv.col;
}
if (w_sum > 0) {
/* Avoid division by zero.
* Normalize with the sum of the coefficients
* Q3 = Q10 / Q7
*/
mv->as_mv.row = mv_row_sum / w_sum;
mv->as_mv.col = mv_col_sum / w_sum;
mi->mbmi.need_to_clamp_mvs |=
vp8_check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
}
}
}
void vp8_interpolate_motion(MACROBLOCKD *mb, int mb_row, int mb_col,
int mb_rows, int mb_cols) {
/* Find relevant neighboring blocks */
EC_BLOCK neighbors[NUM_NEIGHBORS];
int i;
/* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
for (i = 0; i < NUM_NEIGHBORS; ++i) {
neighbors[i].ref_frame = MAX_REF_FRAMES;
neighbors[i].mv.row = neighbors[i].mv.col = 0;
}
find_neighboring_blocks(mb->mode_info_context, neighbors, mb_row, mb_col,
mb_rows, mb_cols, mb->mode_info_stride);
/* Interpolate MVs for the missing blocks from the surrounding
* blocks which refer to the last frame. */
interpolate_mvs(mb, neighbors, LAST_FRAME);
mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
mb->mode_info_context->mbmi.mode = SPLITMV;
mb->mode_info_context->mbmi.uv_mode = DC_PRED;
mb->mode_info_context->mbmi.partitioning = 3;
mb->mode_info_context->mbmi.segment_id = 0;
}
|