1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
|
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "block.h"
#include "onyx_int.h"
#include "vpx_dsp/variance.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "encodeintra.h"
#include "vp8/common/common.h"
#include "vp8/common/setupintrarecon.h"
#include "vp8/common/systemdependent.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_scale/vpx_scale.h"
#include "encodemb.h"
#include "vp8/common/extend.h"
#include "vpx_ports/system_state.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "rdopt.h"
#include "vp8/common/quant_common.h"
#include "encodemv.h"
#include "encodeframe.h"
#define OUTPUT_FPF 0
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
extern int vp8_kf_boost_qadjustment[QINDEX_RANGE];
extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE];
#define IIFACTOR 1.5
#define IIKFACTOR1 1.40
#define IIKFACTOR2 1.5
#define RMAX 14.0
#define GF_RMAX 48.0
#define KF_MB_INTRA_MIN 300
#define GF_MB_INTRA_MIN 200
#define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001)
#define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0
#define NEW_BOOST 1
static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 };
static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 };
static const int cq_level[QINDEX_RANGE] = {
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
};
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame);
/* Resets the first pass file to the given position using a relative seek
* from the current position
*/
static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) {
cpi->twopass.stats_in = Position;
}
static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) {
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
*next_frame = *cpi->twopass.stats_in;
return 1;
}
/* Read frame stats at an offset from the current position */
static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats,
int offset) {
FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
/* Check legality of offset */
if (offset >= 0) {
if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF;
} else if (offset < 0) {
if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF;
}
*frame_stats = fps_ptr[offset];
return 1;
}
static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) {
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF;
*fps = *cpi->twopass.stats_in;
cpi->twopass.stats_in =
(void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
return 1;
}
static void output_stats(struct vpx_codec_pkt_list *pktlist,
FIRSTPASS_STATS *stats) {
struct vpx_codec_cx_pkt pkt;
pkt.kind = VPX_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
vpx_codec_pkt_list_add(pktlist, &pkt);
/* TEMP debug code */
#if OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile,
"%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f"
" %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
" %12.0f %12.0f %12.4f\n",
stats->frame, stats->intra_error, stats->coded_error,
stats->ssim_weighted_pred_err, stats->pcnt_inter,
stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
stats->count, stats->duration);
fclose(fpfile);
}
#endif
}
static void zero_stats(FIRSTPASS_STATS *section) {
section->frame = 0.0;
section->intra_error = 0.0;
section->coded_error = 0.0;
section->ssim_weighted_pred_err = 0.0;
section->pcnt_inter = 0.0;
section->pcnt_motion = 0.0;
section->pcnt_second_ref = 0.0;
section->pcnt_neutral = 0.0;
section->MVr = 0.0;
section->mvr_abs = 0.0;
section->MVc = 0.0;
section->mvc_abs = 0.0;
section->MVrv = 0.0;
section->MVcv = 0.0;
section->mv_in_out_count = 0.0;
section->new_mv_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
}
static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
section->frame += frame->frame;
section->intra_error += frame->intra_error;
section->coded_error += frame->coded_error;
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
section->pcnt_inter += frame->pcnt_inter;
section->pcnt_motion += frame->pcnt_motion;
section->pcnt_second_ref += frame->pcnt_second_ref;
section->pcnt_neutral += frame->pcnt_neutral;
section->MVr += frame->MVr;
section->mvr_abs += frame->mvr_abs;
section->MVc += frame->MVc;
section->mvc_abs += frame->mvc_abs;
section->MVrv += frame->MVrv;
section->MVcv += frame->MVcv;
section->mv_in_out_count += frame->mv_in_out_count;
section->new_mv_count += frame->new_mv_count;
section->count += frame->count;
section->duration += frame->duration;
}
static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
section->frame -= frame->frame;
section->intra_error -= frame->intra_error;
section->coded_error -= frame->coded_error;
section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
section->pcnt_inter -= frame->pcnt_inter;
section->pcnt_motion -= frame->pcnt_motion;
section->pcnt_second_ref -= frame->pcnt_second_ref;
section->pcnt_neutral -= frame->pcnt_neutral;
section->MVr -= frame->MVr;
section->mvr_abs -= frame->mvr_abs;
section->MVc -= frame->MVc;
section->mvc_abs -= frame->mvc_abs;
section->MVrv -= frame->MVrv;
section->MVcv -= frame->MVcv;
section->mv_in_out_count -= frame->mv_in_out_count;
section->new_mv_count -= frame->new_mv_count;
section->count -= frame->count;
section->duration -= frame->duration;
}
static void avg_stats(FIRSTPASS_STATS *section) {
if (section->count < 1.0) return;
section->intra_error /= section->count;
section->coded_error /= section->count;
section->ssim_weighted_pred_err /= section->count;
section->pcnt_inter /= section->count;
section->pcnt_second_ref /= section->count;
section->pcnt_neutral /= section->count;
section->pcnt_motion /= section->count;
section->MVr /= section->count;
section->mvr_abs /= section->count;
section->MVc /= section->count;
section->mvc_abs /= section->count;
section->MVrv /= section->count;
section->MVcv /= section->count;
section->mv_in_out_count /= section->count;
section->duration /= section->count;
}
/* Calculate a modified Error used in distributing bits between easier
* and harder frames
*/
static double calculate_modified_err(VP8_COMP *cpi,
FIRSTPASS_STATS *this_frame) {
double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err /
cpi->twopass.total_stats.count);
double this_err = this_frame->ssim_weighted_pred_err;
double modified_err;
if (this_err > av_err) {
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1);
} else {
modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2);
}
return modified_err;
}
static const double weight_table[256] = {
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500,
0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250,
0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000,
0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500,
0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
1.000000, 1.000000, 1.000000, 1.000000
};
static double simple_weight(YV12_BUFFER_CONFIG *source) {
int i, j;
unsigned char *src = source->y_buffer;
double sum_weights = 0.0;
/* Loop throught the Y plane raw examining levels and creating a weight
* for the image
*/
i = source->y_height;
do {
j = source->y_width;
do {
sum_weights += weight_table[*src];
src++;
} while (--j);
src -= source->y_width;
src += source->y_stride;
} while (--i);
sum_weights /= (source->y_height * source->y_width);
return sum_weights;
}
/* This function returns the current per frame maximum bitrate target */
static int frame_max_bits(VP8_COMP *cpi) {
/* Max allocation for a single frame based on the max section guidelines
* passed in and how many bits are left
*/
int max_bits;
/* For CBR we need to also consider buffer fullness.
* If we are running below the optimal level then we need to gradually
* tighten up on max_bits.
*/
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
double buffer_fullness_ratio =
(double)cpi->buffer_level /
DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level);
/* For CBR base this on the target average bits per frame plus the
* maximum sedction rate passed in by the user
*/
max_bits = (int)(cpi->av_per_frame_bandwidth *
((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
/* If our buffer is below the optimum level */
if (buffer_fullness_ratio < 1.0) {
/* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */
int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2))
? cpi->av_per_frame_bandwidth >> 2
: max_bits >> 2;
max_bits = (int)(max_bits * buffer_fullness_ratio);
/* Lowest value we will set ... which should allow the buffer to
* refill.
*/
if (max_bits < min_max_bits) max_bits = min_max_bits;
}
}
/* VBR */
else {
/* For VBR base this on the bits and frames left plus the
* two_pass_vbrmax_section rate passed in by the user
*/
max_bits = saturate_cast_double_to_int(
((double)cpi->twopass.bits_left /
(cpi->twopass.total_stats.count -
(double)cpi->common.current_video_frame)) *
((double)cpi->oxcf.two_pass_vbrmax_section / 100.0));
}
/* Trap case where we are out of bits */
if (max_bits < 0) max_bits = 0;
return max_bits;
}
void vp8_init_first_pass(VP8_COMP *cpi) {
zero_stats(&cpi->twopass.total_stats);
}
void vp8_end_first_pass(VP8_COMP *cpi) {
output_stats(cpi->output_pkt_list, &cpi->twopass.total_stats);
}
static void zz_motion_search(MACROBLOCK *x, YV12_BUFFER_CONFIG *raw_buffer,
int *raw_motion_err,
YV12_BUFFER_CONFIG *recon_buffer,
int *best_motion_err, int recon_yoffset) {
MACROBLOCKD *const xd = &x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
unsigned char *src_ptr = (*(b->base_src) + b->src);
int src_stride = b->src_stride;
unsigned char *raw_ptr;
int raw_stride = raw_buffer->y_stride;
unsigned char *ref_ptr;
int ref_stride = x->e_mbd.pre.y_stride;
/* Set up pointers for this macro block raw buffer */
raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset);
vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride,
(unsigned int *)(raw_motion_err));
/* Set up pointers for this macro block recon buffer */
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset);
vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride,
(unsigned int *)(best_motion_err));
}
static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x,
int_mv *ref_mv, MV *best_mv,
YV12_BUFFER_CONFIG *recon_buffer,
int *best_motion_err, int recon_yoffset) {
MACROBLOCKD *const xd = &x->e_mbd;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
int num00;
int_mv tmp_mv;
int_mv ref_mv_full;
int tmp_err;
int step_param = 3; /* Don't search over full range for first pass */
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
int n;
vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16];
int new_mv_mode_penalty = 256;
/* override the default variance function to use MSE */
v_fn_ptr.vf = vpx_mse16x16;
/* Set up pointers for this macro block recon buffer */
xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset;
/* Initial step/diamond search centred on best mv */
tmp_mv.as_int = 0;
ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param,
x->sadperbit16, &num00, &v_fn_ptr,
x->mvcost, ref_mv);
if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.as_mv.row;
best_mv->col = tmp_mv.as_mv.col;
}
/* Further step/diamond searches as necessary */
n = num00;
num00 = 0;
while (n < further_steps) {
n++;
if (num00) {
num00--;
} else {
tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv,
step_param + n, x->sadperbit16, &num00,
&v_fn_ptr, x->mvcost, ref_mv);
if (tmp_err < INT_MAX - new_mv_mode_penalty) {
tmp_err += new_mv_mode_penalty;
}
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
best_mv->row = tmp_mv.as_mv.row;
best_mv->col = tmp_mv.as_mv.col;
}
}
}
}
void vp8_first_pass(VP8_COMP *cpi) {
int mb_row, mb_col;
MACROBLOCK *const x = &cpi->mb;
VP8_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int recon_yoffset, recon_uvoffset;
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
int recon_y_stride = lst_yv12->y_stride;
int recon_uv_stride = lst_yv12->uv_stride;
int64_t intra_error = 0;
int64_t coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
int sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
int intrapenalty = 256;
int neutral_count = 0;
int new_mv_count = 0;
int sum_in_vectors = 0;
uint32_t lastmv_as_int = 0;
int_mv zero_ref_mv;
zero_ref_mv.as_int = 0;
vpx_clear_system_state();
x->src = *cpi->Source;
xd->pre = *lst_yv12;
xd->dst = *new_yv12;
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
if (!cm->use_bilinear_mc_filter) {
xd->subpixel_predict = vp8_sixtap_predict4x4;
xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
} else {
xd->subpixel_predict = vp8_bilinear_predict4x4;
xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
}
vp8_build_block_offsets(x);
/* set up frame new frame for intra coded blocks */
vp8_setup_intra_recon(new_yv12);
vp8cx_frame_init_quantizer(cpi);
/* Initialise the MV cost table to the defaults */
{
int flag[2] = { 1, 1 };
vp8_initialize_rd_consts(cpi, x,
vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vp8_build_component_cost_table(cpi->mb.mvcost,
(const MV_CONTEXT *)cm->fc.mvc, flag);
}
/* for each macroblock row in image */
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
int_mv best_ref_mv;
best_ref_mv.as_int = 0;
/* reset above block coeffs */
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
/* Set up limit values for motion vectors to prevent them extending
* outside the UMV borders
*/
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max =
((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
/* for each macroblock col in image */
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
int this_error;
int gf_motion_error = INT_MAX;
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset;
xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
/* Copy current mb to a buffer */
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
/* do intra 16x16 prediction */
this_error = vp8_encode_intra(x, use_dc_pred);
/* "intrapenalty" below deals with situations where the intra
* and inter error scores are very low (eg a plain black frame)
* We do not have special cases in first pass for 0,0 and
* nearest etc so all inter modes carry an overhead cost
* estimate fot the mv. When the error score is very low this
* causes us to pick all or lots of INTRA modes and throw lots
* of key frames. This penalty adds a cost matching that of a
* 0,0 mv to the intra case.
*/
this_error += intrapenalty;
/* Cumulative intra error total */
intra_error += (int64_t)this_error;
/* Set up limit values for motion vectors to prevent them
* extending outside the UMV borders
*/
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max =
((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
/* Other than for the first frame do a motion search */
if (cm->current_video_frame > 0) {
BLOCKD *d = &x->e_mbd.block[0];
MV tmp_mv = { 0, 0 };
int tmp_err;
int motion_error = INT_MAX;
int raw_motion_error = INT_MAX;
/* Simple 0,0 motion with no mv overhead */
zz_motion_search(x, cpi->last_frame_unscaled_source, &raw_motion_error,
lst_yv12, &motion_error, recon_yoffset);
d->bmi.mv.as_mv.row = 0;
d->bmi.mv.as_mv.col = 0;
if (raw_motion_error < cpi->oxcf.encode_breakout) {
goto skip_motion_search;
}
/* Test last reference frame using the previous best mv as the
* starting point (best reference) for the search
*/
first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv,
lst_yv12, &motion_error, recon_yoffset);
/* If the current best reference mv is not centred on 0,0
* then do a 0,0 based search as well
*/
if (best_ref_mv.as_int) {
tmp_err = INT_MAX;
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12,
&tmp_err, recon_yoffset);
if (tmp_err < motion_error) {
motion_error = tmp_err;
d->bmi.mv.as_mv.row = tmp_mv.row;
d->bmi.mv.as_mv.col = tmp_mv.col;
}
}
/* Experimental search in a second reference frame ((0,0)
* based only)
*/
if (cm->current_video_frame > 1) {
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12,
&gf_motion_error, recon_yoffset);
if ((gf_motion_error < motion_error) &&
(gf_motion_error < this_error)) {
second_ref_count++;
}
/* Reset to last frame as reference buffer */
xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
}
skip_motion_search:
/* Intra assumed best */
best_ref_mv.as_int = 0;
if (motion_error <= this_error) {
/* Keep a count of cases where the inter and intra were
* very close and very low. This helps with scene cut
* detection for example in cropped clips with black bars
* at the sides or top and bottom.
*/
if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) &&
(this_error < (2 * intrapenalty))) {
neutral_count++;
}
d->bmi.mv.as_mv.row *= 8;
d->bmi.mv.as_mv.col *= 8;
this_error = motion_error;
vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv);
vp8_encode_inter16x16y(x);
sum_mvr += d->bmi.mv.as_mv.row;
sum_mvr_abs += abs(d->bmi.mv.as_mv.row);
sum_mvc += d->bmi.mv.as_mv.col;
sum_mvc_abs += abs(d->bmi.mv.as_mv.col);
sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row;
sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col;
intercount++;
best_ref_mv.as_int = d->bmi.mv.as_int;
/* Was the vector non-zero */
if (d->bmi.mv.as_int) {
mvcount++;
/* Was it different from the last non zero vector */
if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++;
lastmv_as_int = d->bmi.mv.as_int;
/* Does the Row vector point inwards or outwards */
if (mb_row < cm->mb_rows / 2) {
if (d->bmi.mv.as_mv.row > 0) {
sum_in_vectors--;
} else if (d->bmi.mv.as_mv.row < 0) {
sum_in_vectors++;
}
} else if (mb_row > cm->mb_rows / 2) {
if (d->bmi.mv.as_mv.row > 0) {
sum_in_vectors++;
} else if (d->bmi.mv.as_mv.row < 0) {
sum_in_vectors--;
}
}
/* Does the Row vector point inwards or outwards */
if (mb_col < cm->mb_cols / 2) {
if (d->bmi.mv.as_mv.col > 0) {
sum_in_vectors--;
} else if (d->bmi.mv.as_mv.col < 0) {
sum_in_vectors++;
}
} else if (mb_col > cm->mb_cols / 2) {
if (d->bmi.mv.as_mv.col > 0) {
sum_in_vectors++;
} else if (d->bmi.mv.as_mv.col < 0) {
sum_in_vectors--;
}
}
}
}
}
coded_error += (int64_t)this_error;
/* adjust to the next column of macroblocks */
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
}
/* adjust to the next row of mbs */
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
/* extend the recon for intra prediction */
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
vpx_clear_system_state();
}
vpx_clear_system_state();
{
double weight = 0.0;
FIRSTPASS_STATS fps;
fps.frame = cm->current_video_frame;
fps.intra_error = (double)(intra_error >> 8);
fps.coded_error = (double)(coded_error >> 8);
weight = simple_weight(cpi->Source);
if (weight < 0.1) weight = 0.1;
fps.ssim_weighted_pred_err = fps.coded_error * weight;
fps.pcnt_inter = 0.0;
fps.pcnt_motion = 0.0;
fps.MVr = 0.0;
fps.mvr_abs = 0.0;
fps.MVc = 0.0;
fps.mvc_abs = 0.0;
fps.MVrv = 0.0;
fps.MVcv = 0.0;
fps.mv_in_out_count = 0.0;
fps.new_mv_count = 0.0;
fps.count = 1.0;
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
if (mvcount > 0) {
fps.MVr = (double)sum_mvr / (double)mvcount;
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
fps.MVc = (double)sum_mvc / (double)mvcount;
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) /
(double)mvcount;
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) /
(double)mvcount;
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
fps.new_mv_count = new_mv_count;
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
}
/* TODO: handle the case when duration is set to 0, or something less
* than the full time between subsequent cpi->source_time_stamps
*/
fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start);
/* don't want to do output stats with a stack variable! */
memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS));
output_stats(cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
accumulate_stats(&cpi->twopass.total_stats, &fps);
}
/* Copy the previous Last Frame into the GF buffer if specific
* conditions for doing so are met
*/
if ((cm->current_video_frame > 0) &&
(cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
((cpi->twopass.this_frame_stats.intra_error /
DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
2.0)) {
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
}
/* swap frame pointers so last frame refers to the frame we just
* compressed
*/
vp8_swap_yv12_buffer(lst_yv12, new_yv12);
vp8_yv12_extend_frame_borders(lst_yv12);
/* Special case for the first frame. Copy into the GF buffer as a
* second reference.
*/
if (cm->current_video_frame == 0) {
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
}
cm->current_video_frame++;
}
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
/* Estimate a cost per mb attributable to overheads such as the coding of
* modes and motion vectors.
* Currently simplistic in its assumptions for testing.
*/
static double bitcost(double prob) {
if (prob > 0.000122) {
return -log(prob) / log(2.0);
} else {
return 13.0;
}
}
static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) {
int mv_cost;
int64_t mode_cost;
double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
double av_intra = (1.0 - av_pct_inter);
double zz_cost;
double motion_cost;
double intra_cost;
zz_cost = bitcost(av_pct_inter - av_pct_motion);
motion_cost = bitcost(av_pct_motion);
intra_cost = bitcost(av_intra);
/* Estimate of extra bits per mv overhead for mbs
* << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb
*/
mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
/* Crude estimate of overhead cost from modes
* << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb
*/
mode_cost =
(int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) +
(av_pct_motion * motion_cost) + (av_intra * intra_cost)) *
cpi->common.MBs) *
512;
return mv_cost + mode_cost;
}
static double calc_correction_factor(double err_per_mb, double err_devisor,
double pt_low, double pt_high, int Q) {
double power_term;
double error_term = err_per_mb / err_devisor;
double correction_factor;
/* Adjustment based on Q to power term. */
power_term = pt_low + (Q * 0.01);
power_term = (power_term > pt_high) ? pt_high : power_term;
/* Adjustments to error term */
/* TBD */
/* Calculate correction factor */
correction_factor = pow(error_term, power_term);
/* Clip range */
correction_factor = (correction_factor < 0.05) ? 0.05
: (correction_factor > 5.0) ? 5.0
: correction_factor;
return correction_factor;
}
static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
int section_target_bandwitdh, int overhead_bits) {
int Q;
int num_mbs = cpi->common.MBs;
int target_norm_bits_per_mb;
double section_err = (fpstats->coded_error / fpstats->count);
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double speed_correction = 1.0;
int overhead_bits_per_mb;
if (section_target_bandwitdh <= 0) {
return cpi->twopass.maxq_max_limit; /* Highest value allowed */
}
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
? (512 * section_target_bandwitdh) / num_mbs
: 512 * (section_target_bandwitdh / num_mbs);
/* Calculate a corrective factor based on a rolling ratio of bits spent
* vs target bits
*/
if ((cpi->rolling_target_bits > 0) &&
(cpi->active_worst_quality < cpi->worst_quality)) {
double rolling_ratio;
rolling_ratio =
(double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits;
if (rolling_ratio < 0.95) {
cpi->twopass.est_max_qcorrection_factor -= 0.005;
} else if (rolling_ratio > 1.05) {
cpi->twopass.est_max_qcorrection_factor += 0.005;
}
cpi->twopass.est_max_qcorrection_factor =
(cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1
: (cpi->twopass.est_max_qcorrection_factor > 10.0)
? 10.0
: cpi->twopass.est_max_qcorrection_factor;
}
/* Corrections for higher compression speed settings
* (reduced compression expected)
*/
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
if (cpi->oxcf.cpu_used <= 5) {
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
} else {
speed_correction = 1.25;
}
}
/* Estimate of overhead bits per mb */
/* Correction to overhead bits for min allowed Q. */
overhead_bits_per_mb = overhead_bits / num_mbs;
overhead_bits_per_mb = (int)(overhead_bits_per_mb *
pow(0.98, (double)cpi->twopass.maxq_min_limit));
/* Try and pick a max Q that will be high enough to encode the
* content at the given rate.
*/
for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) {
int bits_per_mb_at_this_q;
/* Error per MB based correction factor */
err_correction_factor =
calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
bits_per_mb_at_this_q =
vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
bits_per_mb_at_this_q =
(int)(.5 + err_correction_factor * speed_correction *
cpi->twopass.est_max_qcorrection_factor *
cpi->twopass.section_max_qfactor *
(double)bits_per_mb_at_this_q);
/* Mode and motion overhead */
/* As Q rises in real encode loop rd code will force overhead down
* We make a crude adjustment for this here as *.98 per Q step.
*/
overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
}
/* Restriction on active max q for constrained quality mode. */
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality)) {
Q = cpi->cq_target_quality;
}
/* Adjust maxq_min_limit and maxq_max_limit limits based on
* average q observed in clip for non kf/gf.arf frames
* Give average a chance to settle though.
*/
if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) &&
(cpi->ni_frames > 150)) {
cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality)
? (cpi->ni_av_qi + 32)
: cpi->worst_quality;
cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality)
? (cpi->ni_av_qi - 32)
: cpi->best_quality;
}
return Q;
}
/* For cq mode estimate a cq level that matches the observed
* complexity and data rate.
*/
static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats,
int section_target_bandwitdh, int overhead_bits) {
int Q;
int num_mbs = cpi->common.MBs;
int target_norm_bits_per_mb;
double section_err = (fpstats->coded_error / fpstats->count);
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double speed_correction = 1.0;
double clip_iiratio;
double clip_iifactor;
int overhead_bits_per_mb;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
? (512 * section_target_bandwitdh) / num_mbs
: 512 * (section_target_bandwitdh / num_mbs);
/* Estimate of overhead bits per mb */
overhead_bits_per_mb = overhead_bits / num_mbs;
/* Corrections for higher compression speed settings
* (reduced compression expected)
*/
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
if (cpi->oxcf.cpu_used <= 5) {
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
} else {
speed_correction = 1.25;
}
}
/* II ratio correction factor for clip as a whole */
clip_iiratio = cpi->twopass.total_stats.intra_error /
DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
if (clip_iifactor < 0.80) clip_iifactor = 0.80;
/* Try and pick a Q that can encode the content at the given rate. */
for (Q = 0; Q < MAXQ; ++Q) {
int bits_per_mb_at_this_q;
/* Error per MB based correction factor */
err_correction_factor =
calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q);
bits_per_mb_at_this_q =
vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb;
bits_per_mb_at_this_q =
(int)(.5 + err_correction_factor * speed_correction * clip_iifactor *
(double)bits_per_mb_at_this_q);
/* Mode and motion overhead */
/* As Q rises in real encode loop rd code will force overhead down
* We make a crude adjustment for this here as *.98 per Q step.
*/
overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
}
/* Clip value to range "best allowed to (worst allowed - 1)" */
Q = cq_level[Q];
if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1;
if (Q < cpi->best_quality) Q = cpi->best_quality;
return Q;
}
static int estimate_q(VP8_COMP *cpi, double section_err,
int section_target_bandwitdh) {
int Q;
int num_mbs = cpi->common.MBs;
int target_norm_bits_per_mb;
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double speed_correction = 1.0;
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
? (512 * section_target_bandwitdh) / num_mbs
: 512 * (section_target_bandwitdh / num_mbs);
/* Corrections for higher compression speed settings
* (reduced compression expected)
*/
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
if (cpi->oxcf.cpu_used <= 5) {
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
} else {
speed_correction = 1.25;
}
}
/* Try and pick a Q that can encode the content at the given rate. */
for (Q = 0; Q < MAXQ; ++Q) {
int bits_per_mb_at_this_q;
/* Error per MB based correction factor */
err_correction_factor =
calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q);
bits_per_mb_at_this_q =
(int)(.5 + (err_correction_factor * speed_correction *
cpi->twopass.est_max_qcorrection_factor *
(double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0));
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
}
return Q;
}
/* Estimate a worst case Q for a KF group */
static int estimate_kf_group_q(VP8_COMP *cpi, double section_err,
int section_target_bandwitdh,
double group_iiratio) {
int Q;
int num_mbs = cpi->common.MBs;
int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs;
int bits_per_mb_at_this_q;
double err_per_mb = section_err / num_mbs;
double err_correction_factor;
double speed_correction = 1.0;
double current_spend_ratio = 1.0;
double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90;
double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80;
double iiratio_correction_factor = 1.0;
double combined_correction_factor;
/* Trap special case where the target is <= 0 */
if (target_norm_bits_per_mb <= 0) return MAXQ * 2;
/* Calculate a corrective factor based on a rolling ratio of bits spent
* vs target bits
* This is clamped to the range 0.1 to 10.0
*/
if (cpi->long_rolling_target_bits <= 0) {
current_spend_ratio = 10.0;
} else {
current_spend_ratio = (double)cpi->long_rolling_actual_bits /
(double)cpi->long_rolling_target_bits;
current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0
: (current_spend_ratio < 0.1) ? 0.1
: current_spend_ratio;
}
/* Calculate a correction factor based on the quality of prediction in
* the sequence as indicated by intra_inter error score ratio (IIRatio)
* The idea here is to favour subsampling in the hardest sections vs
* the easyest.
*/
iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1);
if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5;
/* Corrections for higher compression speed settings
* (reduced compression expected)
*/
if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) {
if (cpi->oxcf.cpu_used <= 5) {
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04);
} else {
speed_correction = 1.25;
}
}
/* Combine the various factors calculated above */
combined_correction_factor =
speed_correction * iiratio_correction_factor * current_spend_ratio;
/* Try and pick a Q that should be high enough to encode the content at
* the given rate.
*/
for (Q = 0; Q < MAXQ; ++Q) {
/* Error per MB based correction factor */
err_correction_factor =
calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q);
bits_per_mb_at_this_q =
(int)(.5 + (err_correction_factor * combined_correction_factor *
(double)vp8_bits_per_mb[INTER_FRAME][Q]));
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break;
}
/* If we could not hit the target even at Max Q then estimate what Q
* would have been required
*/
while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) &&
(Q < (MAXQ * 2))) {
bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q);
Q++;
}
return Q;
}
void vp8_init_second_pass(VP8_COMP *cpi) {
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS *start_pos;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
zero_stats(&cpi->twopass.total_stats);
zero_stats(&cpi->twopass.total_left_stats);
if (!cpi->twopass.stats_in_end) return;
cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
cpi->twopass.total_left_stats = cpi->twopass.total_stats;
/* each frame can have a different duration, as the frame rate in the
* source isn't guaranteed to be constant. The frame rate prior to
* the first frame encoded in the second pass is a guess. However the
* sum duration is not. Its calculated based on the actual durations of
* all frames from the first pass.
*/
vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count /
cpi->twopass.total_stats.duration);
cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration *
cpi->oxcf.target_bandwidth / 10000000.0);
cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration *
two_pass_min_rate / 10000000.0);
/* Calculate a minimum intra value to be used in determining the IIratio
* scores used in the second pass. We have this minimum to make sure
* that clips that are static but "low complexity" in the intra domain
* are still boosted appropriately for KF/GF/ARF
*/
cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
/* Scan the first pass file and calculate an average Intra / Inter error
* score ratio for the sequence
*/
{
double sum_iiratio = 0.0;
double IIRatio;
start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
while (input_stats(cpi, &this_frame) != EOF) {
IIRatio =
this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
sum_iiratio += IIRatio;
}
cpi->twopass.avg_iiratio =
sum_iiratio /
DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
/* Reset file position */
reset_fpf_position(cpi, start_pos);
}
/* Scan the first pass file and calculate a modified total error based
* upon the bias/power function used to allocate bits
*/
{
start_pos = cpi->twopass.stats_in; /* Note starting "file" position */
cpi->twopass.modified_error_total = 0.0;
cpi->twopass.modified_error_used = 0.0;
while (input_stats(cpi, &this_frame) != EOF) {
cpi->twopass.modified_error_total +=
calculate_modified_err(cpi, &this_frame);
}
cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
reset_fpf_position(cpi, start_pos); /* Reset file position */
}
}
void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; }
/* This function gives and estimate of how badly we believe the prediction
* quality is decaying from frame to frame.
*/
static double get_prediction_decay_rate(FIRSTPASS_STATS *next_frame) {
double prediction_decay_rate;
double motion_decay;
double motion_pct = next_frame->pcnt_motion;
/* Initial basis is the % mbs inter coded */
prediction_decay_rate = next_frame->pcnt_inter;
/* High % motion -> somewhat higher decay rate */
motion_decay = (1.0 - (motion_pct / 20.0));
if (motion_decay < prediction_decay_rate) {
prediction_decay_rate = motion_decay;
}
/* Adjustment to decay rate based on speed of motion */
{
double this_mv_rabs;
double this_mv_cabs;
double distance_factor;
this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct);
this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct);
distance_factor =
sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) /
250.0;
distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor));
if (distance_factor < prediction_decay_rate) {
prediction_decay_rate = distance_factor;
}
}
return prediction_decay_rate;
}
/* Function to test for a condition where a complex transition is followed
* by a static section. For example in slide shows where there is a fade
* between slides. This is to help with more optimal kf and gf positioning.
*/
static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval,
int still_interval,
double loop_decay_rate,
double decay_accumulator) {
int trans_to_still = 0;
/* Break clause to detect very still sections after motion
* For example a static image after a fade or other transition
* instead of a clean scene cut.
*/
if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) &&
(decay_accumulator < 0.9)) {
int j;
FIRSTPASS_STATS *position = cpi->twopass.stats_in;
FIRSTPASS_STATS tmp_next_frame;
double decay_rate;
/* Look ahead a few frames to see if static condition persists... */
for (j = 0; j < still_interval; ++j) {
if (EOF == input_stats(cpi, &tmp_next_frame)) break;
decay_rate = get_prediction_decay_rate(&tmp_next_frame);
if (decay_rate < 0.999) break;
}
/* Reset file position */
reset_fpf_position(cpi, position);
/* Only if it does do we signal a transition to still */
if (j == still_interval) trans_to_still = 1;
}
return trans_to_still;
}
/* This function detects a flash through the high relative pcnt_second_ref
* score in the frame following a flash frame. The offset passed in should
* reflect this
*/
static int detect_flash(VP8_COMP *cpi, int offset) {
FIRSTPASS_STATS next_frame;
int flash_detected = 0;
/* Read the frame data. */
/* The return is 0 (no flash detected) if not a valid frame */
if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
/* What we are looking for here is a situation where there is a
* brief break in prediction (such as a flash) but subsequent frames
* are reasonably well predicted by an earlier (pre flash) frame.
* The recovery after a flash is indicated by a high pcnt_second_ref
* comapred to pcnt_inter.
*/
if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) &&
(next_frame.pcnt_second_ref >= 0.5)) {
flash_detected = 1;
/*if (1)
{
FILE *f = fopen("flash.stt", "a");
fprintf(f, "%8.0f %6.2f %6.2f\n",
next_frame.frame,
next_frame.pcnt_inter,
next_frame.pcnt_second_ref);
fclose(f);
}*/
}
}
return flash_detected;
}
/* Update the motion related elements to the GF arf boost calculation */
static void accumulate_frame_motion_stats(FIRSTPASS_STATS *this_frame,
double *this_frame_mv_in_out,
double *mv_in_out_accumulator,
double *abs_mv_in_out_accumulator,
double *mv_ratio_accumulator) {
double this_frame_mvr_ratio;
double this_frame_mvc_ratio;
double motion_pct;
/* Accumulate motion stats. */
motion_pct = this_frame->pcnt_motion;
/* Accumulate Motion In/Out of frame stats */
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
*abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
/* Accumulate a measure of how uniform (or conversely how random)
* the motion field is. (A ratio of absmv / mv)
*/
if (motion_pct > 0.05) {
this_frame_mvr_ratio =
fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
this_frame_mvc_ratio =
fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
*mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
? (this_frame_mvr_ratio * motion_pct)
: this_frame->mvr_abs * motion_pct;
*mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs)
? (this_frame_mvc_ratio * motion_pct)
: this_frame->mvc_abs * motion_pct;
}
}
/* Calculate a baseline boost number for the current frame. */
static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame,
double this_frame_mv_in_out) {
double frame_boost;
/* Underlying boost factor is based on inter intra error ratio */
if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) {
frame_boost = (IIFACTOR * this_frame->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
} else {
frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
}
/* Increase boost for frames where new data coming into frame
* (eg zoom out). Slightly reduce boost if there is a net balance
* of motion out of the frame (zoom in).
* The range for this_frame_mv_in_out is -1.0 to +1.0
*/
if (this_frame_mv_in_out > 0.0) {
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
/* In extreme case boost is halved */
} else {
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
}
/* Clip to maximum */
if (frame_boost > GF_RMAX) frame_boost = GF_RMAX;
return frame_boost;
}
#if NEW_BOOST
static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames,
int *f_boost, int *b_boost) {
FIRSTPASS_STATS this_frame;
int i;
double boost_score = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
double r;
int flash_detected = 0;
/* Search forward from the proposed arf/next gf position */
for (i = 0; i < f_frames; ++i) {
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
/* Update the motion related elements to the boost calculation */
accumulate_frame_motion_stats(
&this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
/* Calculate the baseline boost number for this frame */
r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
/* We want to discount the flash frame itself and the recovery
* frame that follows as both will have poor scores.
*/
flash_detected =
detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
/* Cumulative effect of prediction quality decay */
if (!flash_detected) {
decay_accumulator =
decay_accumulator * get_prediction_decay_rate(&this_frame);
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
}
boost_score += (decay_accumulator * r);
/* Break out conditions. */
if ((!flash_detected) &&
((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0))) {
break;
}
}
*f_boost = (int)(boost_score * 100.0) >> 4;
/* Reset for backward looking loop */
boost_score = 0.0;
mv_ratio_accumulator = 0.0;
decay_accumulator = 1.0;
this_frame_mv_in_out = 0.0;
mv_in_out_accumulator = 0.0;
abs_mv_in_out_accumulator = 0.0;
/* Search forward from the proposed arf/next gf position */
for (i = -1; i >= -b_frames; i--) {
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break;
/* Update the motion related elements to the boost calculation */
accumulate_frame_motion_stats(
&this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
/* Calculate the baseline boost number for this frame */
r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out);
/* We want to discount the flash frame itself and the recovery
* frame that follows as both will have poor scores.
*/
flash_detected =
detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1));
/* Cumulative effect of prediction quality decay */
if (!flash_detected) {
decay_accumulator =
decay_accumulator * get_prediction_decay_rate(&this_frame);
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
}
boost_score += (decay_accumulator * r);
/* Break out conditions. */
if ((!flash_detected) &&
((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0))) {
break;
}
}
*b_boost = (int)(boost_score * 100.0) >> 4;
return (*f_boost + *b_boost);
}
#endif
/* Analyse and define a gf/arf group . */
static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_pos;
int i;
double r;
double boost_score = 0.0;
double old_boost_score = 0.0;
double gf_group_err = 0.0;
double gf_first_frame_err = 0.0;
double mod_frame_err = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double loop_decay_rate = 1.00; /* Starting decay rate */
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
int max_bits = frame_max_bits(cpi); /* Max for a single frame */
unsigned int allow_alt_ref =
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
int alt_boost = 0;
int f_boost = 0;
int b_boost = 0;
int flash_detected;
cpi->twopass.gf_group_bits = 0;
cpi->twopass.gf_decay_rate = 0;
vpx_clear_system_state();
start_pos = cpi->twopass.stats_in;
memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */
/* Load stats for the current frame. */
mod_frame_err = calculate_modified_err(cpi, this_frame);
/* Note the error of the frame at the start of the group (this will be
* the GF frame error if we code a normal gf
*/
gf_first_frame_err = mod_frame_err;
/* Special treatment if the current frame is a key frame (which is also
* a gf). If it is then its error score (and hence bit allocation) need
* to be subtracted out from the calculation for the GF group
*/
if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err;
/* Scan forward to try and work out how many frames the next gf group
* should contain and what level of boost is appropriate for the GF
* or ARF that will be coded with the group
*/
i = 0;
while (((i < cpi->twopass.static_scene_max_gf_interval) ||
((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
(i < cpi->twopass.frames_to_key)) {
i++;
/* Accumulate error score of frames in this gf group */
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
if (EOF == input_stats(cpi, &next_frame)) break;
/* Test for the case where there is a brief flash but the prediction
* quality back to an earlier frame is then restored.
*/
flash_detected = detect_flash(cpi, 0);
/* Update the motion related elements to the boost calculation */
accumulate_frame_motion_stats(
&next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
/* Calculate a baseline boost number for this frame */
r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out);
/* Cumulative effect of prediction quality decay */
if (!flash_detected) {
loop_decay_rate = get_prediction_decay_rate(&next_frame);
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
}
boost_score += (decay_accumulator * r);
/* Break clause to detect very still sections after motion
* For example a staic image after a fade or other transition.
*/
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
decay_accumulator)) {
allow_alt_ref = 0;
boost_score = old_boost_score;
break;
}
/* Break out conditions. */
if (
/* Break at cpi->max_gf_interval unless almost totally static */
(i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) ||
(
/* Don't break out with a very short interval */
(i > MIN_GF_INTERVAL) &&
/* Don't break out very close to a key frame */
((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) &&
(!flash_detected) &&
((mv_ratio_accumulator > 100.0) ||
(abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0) ||
((boost_score - old_boost_score) < 2.0)))) {
boost_score = old_boost_score;
break;
}
memcpy(this_frame, &next_frame, sizeof(*this_frame));
old_boost_score = boost_score;
}
cpi->twopass.gf_decay_rate =
(i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0;
/* When using CBR apply additional buffer related upper limits */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
double max_boost;
/* For cbr apply buffer related limits */
if (cpi->drop_frames_allowed) {
int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark *
(cpi->oxcf.optimal_buffer_level / 100);
if (cpi->buffer_level > df_buffer_level) {
max_boost =
((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
} else {
max_boost = 0.0;
}
} else if (cpi->buffer_level > 0) {
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
} else {
max_boost = 0.0;
}
if (boost_score > max_boost) boost_score = max_boost;
}
/* Don't allow conventional gf too near the next kf */
if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
while (i < cpi->twopass.frames_to_key) {
i++;
if (EOF == input_stats(cpi, this_frame)) break;
if (i < cpi->twopass.frames_to_key) {
mod_frame_err = calculate_modified_err(cpi, this_frame);
gf_group_err += mod_frame_err;
}
}
}
cpi->gfu_boost = (int)(boost_score * 100.0) >> 4;
#if NEW_BOOST
/* Alterrnative boost calculation for alt ref */
alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
#endif
/* Should we use the alternate reference frame */
if (allow_alt_ref && (i >= MIN_GF_INTERVAL) &&
/* don't use ARF very near next kf */
(i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
#if NEW_BOOST
((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) &&
((mv_in_out_accumulator / (double)i > -0.2) ||
(mv_in_out_accumulator > -2.0)) &&
(b_boost > 100) && (f_boost > 100))
#else
(next_frame.pcnt_inter > 0.75) &&
((mv_in_out_accumulator / (double)i > -0.2) ||
(mv_in_out_accumulator > -2.0)) &&
(cpi->gfu_boost > 100) &&
(cpi->twopass.gf_decay_rate <=
(ARF_DECAY_THRESH + (cpi->gfu_boost / 200))))
#endif
{
int Boost;
int allocation_chunks;
int Q =
(cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int tmp_q;
int arf_frame_bits = 0;
int group_bits;
#if NEW_BOOST
cpi->gfu_boost = alt_boost;
#endif
/* Estimate the bits to be allocated to the group as a whole */
if ((cpi->twopass.kf_group_bits > 0) &&
(cpi->twopass.kf_group_error_left > 0)) {
group_bits =
(int)((double)cpi->twopass.kf_group_bits *
(gf_group_err / (double)cpi->twopass.kf_group_error_left));
} else {
group_bits = 0;
}
/* Boost for arf frame */
#if NEW_BOOST
Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
#else
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
#endif
Boost += (i * 50);
/* Set max and minimum boost and hence minimum allocation */
if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
Boost = ((cpi->baseline_gf_interval + 1) * 200);
} else if (Boost < 125) {
Boost = 125;
}
allocation_chunks = (i * 100) + Boost;
/* Normalize Altboost and allocations chunck down to prevent overflow */
while (Boost > 1000) {
Boost /= 2;
allocation_chunks /= 2;
}
/* Calculate the number of bits to be spent on the arf based on the
* boost number
*/
arf_frame_bits =
(int)((double)Boost * (group_bits / (double)allocation_chunks));
/* Estimate if there are enough bits available to make worthwhile use
* of an arf.
*/
tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits);
/* Only use an arf if it is likely we will be able to code
* it at a lower Q than the surrounding frames.
*/
if (tmp_q < cpi->worst_quality) {
int half_gf_int;
int frames_after_arf;
int frames_bwd = cpi->oxcf.arnr_max_frames - 1;
int frames_fwd = cpi->oxcf.arnr_max_frames - 1;
cpi->source_alt_ref_pending = 1;
/*
* For alt ref frames the error score for the end frame of the
* group (the alt ref frame) should not contribute to the group
* total and hence the number of bit allocated to the group.
* Rather it forms part of the next group (it is the GF at the
* start of the next group)
* gf_group_err -= mod_frame_err;
*
* For alt ref frames alt ref frame is technically part of the
* GF frame for the next group but we always base the error
* calculation and bit allocation on the current group of frames.
*
* Set the interval till the next gf or arf.
* For ARFs this is the number of frames to be coded before the
* future frame that is coded as an ARF.
* The future frame itself is part of the next group
*/
cpi->baseline_gf_interval = i;
/*
* Define the arnr filter width for this group of frames:
* We only filter frames that lie within a distance of half
* the GF interval from the ARF frame. We also have to trap
* cases where the filter extends beyond the end of clip.
* Note: this_frame->frame has been updated in the loop
* so it now points at the ARF frame.
*/
half_gf_int = cpi->baseline_gf_interval >> 1;
frames_after_arf =
(int)(cpi->twopass.total_stats.count - this_frame->frame - 1);
switch (cpi->oxcf.arnr_type) {
case 1: /* Backward filter */
frames_fwd = 0;
if (frames_bwd > half_gf_int) frames_bwd = half_gf_int;
break;
case 2: /* Forward filter */
if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
frames_bwd = 0;
break;
case 3: /* Centered filter */
default:
frames_fwd >>= 1;
if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf;
if (frames_fwd > half_gf_int) frames_fwd = half_gf_int;
frames_bwd = frames_fwd;
/* For even length filter there is one more frame backward
* than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
*/
if (frames_bwd < half_gf_int) {
frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
}
break;
}
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
} else {
cpi->source_alt_ref_pending = 0;
cpi->baseline_gf_interval = i;
}
} else {
cpi->source_alt_ref_pending = 0;
cpi->baseline_gf_interval = i;
}
/*
* Now decide how many bits should be allocated to the GF group as a
* proportion of those remaining in the kf group.
* The final key frame group in the clip is treated as a special case
* where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
* This is also important for short clips where there may only be one
* key frame.
*/
if (cpi->twopass.frames_to_key >=
(int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) {
cpi->twopass.kf_group_bits =
(cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
}
/* Calculate the bits to be allocated to the group as a whole */
if ((cpi->twopass.kf_group_bits > 0) &&
(cpi->twopass.kf_group_error_left > 0)) {
cpi->twopass.gf_group_bits =
(int64_t)(cpi->twopass.kf_group_bits *
(gf_group_err / cpi->twopass.kf_group_error_left));
} else {
cpi->twopass.gf_group_bits = 0;
}
cpi->twopass.gf_group_bits =
(cpi->twopass.gf_group_bits < 0) ? 0
: (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
? cpi->twopass.kf_group_bits
: cpi->twopass.gf_group_bits;
/* Clip cpi->twopass.gf_group_bits based on user supplied data rate
* variability limit (cpi->oxcf.two_pass_vbrmax_section)
*/
if (cpi->twopass.gf_group_bits >
(int64_t)max_bits * cpi->baseline_gf_interval) {
cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval;
}
/* Reset the file position */
reset_fpf_position(cpi, start_pos);
/* Update the record of error used so far (only done once per gf group) */
cpi->twopass.modified_error_used += gf_group_err;
/* Assign bits to the arf or gf. */
for (i = 0; i <= (cpi->source_alt_ref_pending &&
cpi->common.frame_type != KEY_FRAME);
i++) {
int Boost;
int allocation_chunks;
int Q =
(cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
int gf_bits;
/* For ARF frames */
if (cpi->source_alt_ref_pending && i == 0) {
#if NEW_BOOST
Boost = (alt_boost * GFQ_ADJUSTMENT) / 100;
#else
Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
#endif
Boost += (cpi->baseline_gf_interval * 50);
/* Set max and minimum boost and hence minimum allocation */
if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) {
Boost = ((cpi->baseline_gf_interval + 1) * 200);
} else if (Boost < 125) {
Boost = 125;
}
allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost;
}
/* Else for standard golden frames */
else {
/* boost based on inter / intra ratio of subsequent frames */
Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100;
/* Set max and minimum boost and hence minimum allocation */
if (Boost > (cpi->baseline_gf_interval * 150)) {
Boost = (cpi->baseline_gf_interval * 150);
} else if (Boost < 125) {
Boost = 125;
}
allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100);
}
/* Normalize Altboost and allocations chunck down to prevent overflow */
while (Boost > 1000) {
Boost /= 2;
allocation_chunks /= 2;
}
/* Calculate the number of bits to be spent on the gf or arf based on
* the boost number
*/
gf_bits = saturate_cast_double_to_int(
(double)Boost *
(cpi->twopass.gf_group_bits / (double)allocation_chunks));
/* If the frame that is to be boosted is simpler than the average for
* the gf/arf group then use an alternative calculation
* based on the error score of the frame itself
*/
if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) {
double alt_gf_grp_bits;
int alt_gf_bits;
alt_gf_grp_bits =
(double)cpi->twopass.kf_group_bits *
(mod_frame_err * (double)cpi->baseline_gf_interval) /
DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left);
alt_gf_bits =
(int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks));
if (gf_bits > alt_gf_bits) {
gf_bits = alt_gf_bits;
}
}
/* Else if it is harder than other frames in the group make sure it at
* least receives an allocation in keeping with its relative error
* score, otherwise it may be worse off than an "un-boosted" frame
*/
else {
// Avoid division by 0 by clamping cpi->twopass.kf_group_error_left to 1
int alt_gf_bits = saturate_cast_double_to_int(
(double)cpi->twopass.kf_group_bits * mod_frame_err /
(double)VPXMAX(cpi->twopass.kf_group_error_left, 1));
if (alt_gf_bits > gf_bits) {
gf_bits = alt_gf_bits;
}
}
/* Apply an additional limit for CBR */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) {
cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1);
}
}
/* Don't allow a negative value for gf_bits */
if (gf_bits < 0) gf_bits = 0;
/* Add in minimum for a frame */
gf_bits += cpi->min_frame_bandwidth;
if (i == 0) {
cpi->twopass.gf_bits = gf_bits;
}
if (i == 1 || (!cpi->source_alt_ref_pending &&
(cpi->common.frame_type != KEY_FRAME))) {
/* Per frame bit target for this frame */
cpi->per_frame_bandwidth = gf_bits;
}
}
{
/* Adjust KF group bits and error remainin */
cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
/* Note the error score left in the remaining frames of the group.
* For normal GFs we want to remove the error score for the first
* frame of the group (except in Key frame case where this has
* already happened)
*/
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) {
cpi->twopass.gf_group_error_left =
(int)(gf_group_err - gf_first_frame_err);
} else {
cpi->twopass.gf_group_error_left = (int)gf_group_err;
}
cpi->twopass.gf_group_bits -=
cpi->twopass.gf_bits - cpi->min_frame_bandwidth;
if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
/* This condition could fail if there are two kfs very close together
* despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
* calculation of cpi->twopass.alt_extra_bits.
*/
if (cpi->baseline_gf_interval >= 3) {
#if NEW_BOOST
int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost;
#else
int boost = cpi->gfu_boost;
#endif
if (boost >= 150) {
int pct_extra;
pct_extra = (boost - 100) / 50;
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
cpi->twopass.alt_extra_bits =
(int)(cpi->twopass.gf_group_bits * pct_extra) / 100;
cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits;
cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1);
} else {
cpi->twopass.alt_extra_bits = 0;
}
} else {
cpi->twopass.alt_extra_bits = 0;
}
}
/* Adjustments based on a measure of complexity of the section */
if (cpi->common.frame_type != KEY_FRAME) {
FIRSTPASS_STATS sectionstats;
double Ratio;
zero_stats(§ionstats);
reset_fpf_position(cpi, start_pos);
for (i = 0; i < cpi->baseline_gf_interval; ++i) {
input_stats(cpi, &next_frame);
accumulate_stats(§ionstats, &next_frame);
}
avg_stats(§ionstats);
cpi->twopass.section_intra_rating =
(unsigned int)(sectionstats.intra_error /
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
Ratio = sectionstats.intra_error /
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->twopass.section_max_qfactor < 0.80) {
cpi->twopass.section_max_qfactor = 0.80;
}
reset_fpf_position(cpi, start_pos);
}
}
/* Allocate bits to a normal frame that is neither a gf an arf or a key frame.
*/
static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
int target_frame_size;
double modified_err;
double err_fraction;
int max_bits = frame_max_bits(cpi); /* Max for a single frame */
/* Calculate modified prediction error used in bit allocation */
modified_err = calculate_modified_err(cpi, this_frame);
/* What portion of the remaining GF group error is used by this frame */
if (cpi->twopass.gf_group_error_left > 0) {
err_fraction = modified_err / cpi->twopass.gf_group_error_left;
} else {
err_fraction = 0.0;
}
/* How many of those bits available for allocation should we give it? */
target_frame_size = saturate_cast_double_to_int(
(double)cpi->twopass.gf_group_bits * err_fraction);
/* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits)
* at the top end.
*/
if (target_frame_size < 0) {
target_frame_size = 0;
} else {
if (target_frame_size > max_bits) target_frame_size = max_bits;
if (target_frame_size > cpi->twopass.gf_group_bits) {
target_frame_size = (int)cpi->twopass.gf_group_bits;
}
}
/* Adjust error and bits remaining */
cpi->twopass.gf_group_error_left -= (int)modified_err;
cpi->twopass.gf_group_bits -= target_frame_size;
if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
/* Add in the minimum number of bits that is set aside for every frame. */
target_frame_size += cpi->min_frame_bandwidth;
/* Every other frame gets a few extra bits */
if ((cpi->frames_since_golden & 0x01) &&
(cpi->frames_till_gf_update_due > 0)) {
target_frame_size += cpi->twopass.alt_extra_bits;
}
/* Per frame bit target for this frame */
cpi->per_frame_bandwidth = target_frame_size;
}
void vp8_second_pass(VP8_COMP *cpi) {
int tmp_q;
int frames_left =
(int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame);
FIRSTPASS_STATS this_frame;
FIRSTPASS_STATS this_frame_copy;
double this_frame_intra_error;
double this_frame_coded_error;
int overhead_bits;
vp8_zero(this_frame);
if (!cpi->twopass.stats_in) {
return;
}
vpx_clear_system_state();
if (EOF == input_stats(cpi, &this_frame)) return;
this_frame_intra_error = this_frame.intra_error;
this_frame_coded_error = this_frame.coded_error;
/* keyframe and section processing ! */
if (cpi->twopass.frames_to_key == 0) {
/* Define next KF group and assign bits to it */
memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
find_next_key_frame(cpi, &this_frame_copy);
/* Special case: Error error_resilient_mode mode does not make much
* sense for two pass but with its current meaning this code is
* designed to stop outlandish behaviour if someone does set it when
* using two pass. It effectively disables GF groups. This is
* temporary code until we decide what should really happen in this
* case.
*/
if (cpi->oxcf.error_resilient_mode) {
cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits;
cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left;
cpi->baseline_gf_interval = cpi->twopass.frames_to_key;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
cpi->source_alt_ref_pending = 0;
}
}
/* Is this a GF / ARF (Note that a KF is always also a GF) */
if (cpi->frames_till_gf_update_due == 0) {
/* Define next gf group and assign bits to it */
memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
define_gf_group(cpi, &this_frame_copy);
/* If we are going to code an altref frame at the end of the group
* and the current frame is not a key frame.... If the previous
* group used an arf this frame has already benefited from that arf
* boost and it should not be given extra bits If the previous
* group was NOT coded using arf we may want to apply some boost to
* this GF as well
*/
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
/* Assign a standard frames worth of bits from those allocated
* to the GF group
*/
int bak = cpi->per_frame_bandwidth;
memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
cpi->per_frame_bandwidth = bak;
}
}
/* Otherwise this is an ordinary frame */
else {
/* Special case: Error error_resilient_mode mode does not make much
* sense for two pass but with its current meaning but this code is
* designed to stop outlandish behaviour if someone does set it
* when using two pass. It effectively disables GF groups. This is
* temporary code till we decide what should really happen in this
* case.
*/
if (cpi->oxcf.error_resilient_mode) {
cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key;
if (cpi->common.frame_type != KEY_FRAME) {
/* Assign bits from those allocated to the GF group */
memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
} else {
/* Assign bits from those allocated to the GF group */
memcpy(&this_frame_copy, &this_frame, sizeof(this_frame));
assign_std_frame_bits(cpi, &this_frame_copy);
}
}
/* Keep a globally available copy of this and the next frame's iiratio. */
cpi->twopass.this_iiratio =
(unsigned int)(this_frame_intra_error /
DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
{
FIRSTPASS_STATS next_frame;
if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
cpi->twopass.next_iiratio =
(unsigned int)(next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
}
}
/* Set nominal per second bandwidth for this frame */
cpi->target_bandwidth =
(int)(cpi->per_frame_bandwidth * cpi->output_framerate);
if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0;
/* Account for mv, mode and other overheads. */
overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats);
/* Special case code for first frame. */
if (cpi->common.current_video_frame == 0) {
cpi->twopass.est_max_qcorrection_factor = 1.0;
int64_t section_target_bandwidth = cpi->twopass.bits_left / frames_left;
section_target_bandwidth = VPXMIN(section_target_bandwidth, INT_MAX);
/* Set a cq_level in constrained quality mode. */
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
int est_cq;
est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats,
(int)section_target_bandwidth, overhead_bits);
cpi->cq_target_quality = cpi->oxcf.cq_level;
if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq;
}
/* guess at maxq needed in 2nd pass */
cpi->twopass.maxq_max_limit = cpi->worst_quality;
cpi->twopass.maxq_min_limit = cpi->best_quality;
tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
(int)section_target_bandwidth, overhead_bits);
/* Limit the maxq value returned subsequently.
* This increases the risk of overspend or underspend if the initial
* estimate for the clip is bad, but helps prevent excessive
* variation in Q, especially near the end of a clip
* where for example a small overspend may cause Q to crash
*/
cpi->twopass.maxq_max_limit =
((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality;
cpi->twopass.maxq_min_limit =
((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality;
cpi->active_worst_quality = tmp_q;
cpi->ni_av_qi = tmp_q;
}
/* The last few frames of a clip almost always have to few or too many
* bits and for the sake of over exact rate control we don't want to make
* radical adjustments to the allowed quantizer range just to use up a
* few surplus bits or get beneath the target rate.
*/
else if ((cpi->common.current_video_frame <
(((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) &&
((cpi->common.current_video_frame + cpi->baseline_gf_interval) <
(unsigned int)cpi->twopass.total_stats.count)) {
if (frames_left < 1) frames_left = 1;
int64_t section_target_bandwidth = cpi->twopass.bits_left / frames_left;
section_target_bandwidth = VPXMIN(section_target_bandwidth, INT_MAX);
tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
(int)section_target_bandwidth, overhead_bits);
/* Move active_worst_quality but in a damped way */
if (tmp_q > cpi->active_worst_quality) {
cpi->active_worst_quality++;
} else if (tmp_q < cpi->active_worst_quality) {
cpi->active_worst_quality--;
}
cpi->active_worst_quality =
((cpi->active_worst_quality * 3) + tmp_q + 2) / 4;
}
cpi->twopass.frames_to_key--;
/* Update the total stats remaining sturcture */
subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
}
static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame,
FIRSTPASS_STATS *this_frame,
FIRSTPASS_STATS *next_frame) {
int is_viable_kf = 0;
/* Does the frame satisfy the primary criteria of a key frame
* If so, then examine how well it predicts subsequent frames
*/
if ((this_frame->pcnt_second_ref < 0.10) &&
(next_frame->pcnt_second_ref < 0.10) &&
((this_frame->pcnt_inter < 0.05) ||
(((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) &&
((this_frame->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
((fabs(last_frame->coded_error - this_frame->coded_error) /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
.40) ||
(fabs(last_frame->intra_error - this_frame->intra_error) /
DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
.40) ||
((next_frame->intra_error /
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
int i;
FIRSTPASS_STATS *start_pos;
FIRSTPASS_STATS local_next_frame;
double boost_score = 0.0;
double old_boost_score = 0.0;
double decay_accumulator = 1.0;
double next_iiratio;
memcpy(&local_next_frame, next_frame, sizeof(*next_frame));
/* Note the starting file position so we can reset to it */
start_pos = cpi->twopass.stats_in;
/* Examine how well the key frame predicts subsequent frames */
for (i = 0; i < 16; ++i) {
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
if (next_iiratio > RMAX) next_iiratio = RMAX;
/* Cumulative effect of decay in prediction quality */
if (local_next_frame.pcnt_inter > 0.85) {
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
} else {
decay_accumulator =
decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
}
/* Keep a running total */
boost_score += (decay_accumulator * next_iiratio);
/* Test various breakout clauses */
if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
(((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
0.20) &&
(next_iiratio < 3.0)) ||
((boost_score - old_boost_score) < 0.5) ||
(local_next_frame.intra_error < 200)) {
break;
}
old_boost_score = boost_score;
/* Get the next frame details */
if (EOF == input_stats(cpi, &local_next_frame)) break;
}
/* If there is tolerable prediction for at least the next 3 frames
* then break out else discard this pottential key frame and move on
*/
if (boost_score > 5.0 && (i > 3)) {
is_viable_kf = 1;
} else {
/* Reset the file position */
reset_fpf_position(cpi, start_pos);
is_viable_kf = 0;
}
}
return is_viable_kf;
}
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) {
int i, j;
FIRSTPASS_STATS last_frame;
FIRSTPASS_STATS first_frame;
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS *start_position;
double decay_accumulator = 1.0;
double boost_score = 0;
double old_boost_score = 0.0;
double loop_decay_rate;
double kf_mod_err = 0.0;
double kf_group_err = 0.0;
double kf_group_intra_err = 0.0;
double kf_group_coded_err = 0.0;
double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
memset(&next_frame, 0, sizeof(next_frame));
vpx_clear_system_state();
start_position = cpi->twopass.stats_in;
cpi->common.frame_type = KEY_FRAME;
/* is this a forced key frame by interval */
cpi->this_key_frame_forced = cpi->next_key_frame_forced;
/* Clear the alt ref active flag as this can never be active on a key
* frame
*/
cpi->source_alt_ref_active = 0;
/* Kf is always a gf so clear frames till next gf counter */
cpi->frames_till_gf_update_due = 0;
cpi->twopass.frames_to_key = 1;
/* Take a copy of the initial frame details */
memcpy(&first_frame, this_frame, sizeof(*this_frame));
cpi->twopass.kf_group_bits = 0;
cpi->twopass.kf_group_error_left = 0;
kf_mod_err = calculate_modified_err(cpi, this_frame);
/* find the next keyframe */
i = 0;
while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
/* Accumulate kf group error */
kf_group_err += calculate_modified_err(cpi, this_frame);
/* These figures keep intra and coded error counts for all frames
* including key frames in the group. The effect of the key frame
* itself can be subtracted out using the first_frame data
* collected above
*/
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
/* Load the next frame's stats. */
memcpy(&last_frame, this_frame, sizeof(*this_frame));
input_stats(cpi, this_frame);
/* Provided that we are not at the end of the file... */
if (cpi->oxcf.auto_key &&
lookup_next_frame_stats(cpi, &next_frame) != EOF) {
/* Normal scene cut check */
if ((i >= MIN_GF_INTERVAL) &&
test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) {
break;
}
/* How fast is prediction quality decaying */
loop_decay_rate = get_prediction_decay_rate(&next_frame);
/* We want to know something about the recent past... rather than
* as used elsewhere where we are concened with decay in prediction
* quality since the last GF or KF.
*/
recent_loop_decay[i % 8] = loop_decay_rate;
decay_accumulator = 1.0;
for (j = 0; j < 8; ++j) {
decay_accumulator = decay_accumulator * recent_loop_decay[j];
}
/* Special check for transition or high motion followed by a
* static scene.
*/
if (detect_transition_to_still(cpi, i,
((int)(cpi->key_frame_frequency) - (int)i),
loop_decay_rate, decay_accumulator)) {
break;
}
/* Step on to the next frame */
cpi->twopass.frames_to_key++;
/* If we don't have a real key frame within the next two
* forcekeyframeevery intervals then break out of the loop.
*/
if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) {
break;
}
} else {
cpi->twopass.frames_to_key++;
}
i++;
}
/* If there is a max kf interval set by the user we must obey it.
* We already breakout of the loop above at 2x max.
* This code centers the extra kf if the actual natural
* interval is between 1x and 2x
*/
if (cpi->oxcf.auto_key &&
cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
FIRSTPASS_STATS tmp_frame;
cpi->twopass.frames_to_key /= 2;
/* Copy first frame details */
memcpy(&tmp_frame, &first_frame, sizeof(first_frame));
/* Reset to the start of the group */
reset_fpf_position(cpi, start_position);
kf_group_err = 0;
kf_group_intra_err = 0;
kf_group_coded_err = 0;
/* Rescan to get the correct error data for the forced kf group */
for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
/* Accumulate kf group errors */
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
kf_group_intra_err += tmp_frame.intra_error;
kf_group_coded_err += tmp_frame.coded_error;
/* Load a the next frame's stats */
input_stats(cpi, &tmp_frame);
}
/* Reset to the start of the group */
reset_fpf_position(cpi, current_pos);
cpi->next_key_frame_forced = 1;
} else {
cpi->next_key_frame_forced = 0;
}
/* Special case for the last frame of the file */
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
/* Accumulate kf group error */
kf_group_err += calculate_modified_err(cpi, this_frame);
/* These figures keep intra and coded error counts for all frames
* including key frames in the group. The effect of the key frame
* itself can be subtracted out using the first_frame data
* collected above
*/
kf_group_intra_err += this_frame->intra_error;
kf_group_coded_err += this_frame->coded_error;
}
/* Calculate the number of bits that should be assigned to the kf group. */
if ((cpi->twopass.bits_left > 0) &&
(cpi->twopass.modified_error_left > 0.0)) {
/* Max for a single normal frame (not key frame) */
int max_bits = frame_max_bits(cpi);
/* Maximum bits for the kf group */
int64_t max_grp_bits;
/* Default allocation based on bits left and relative
* complexity of the section
*/
cpi->twopass.kf_group_bits =
(int64_t)(cpi->twopass.bits_left *
(kf_group_err / cpi->twopass.modified_error_left));
/* Clip based on maximum per frame rate defined by the user. */
max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
if (cpi->twopass.kf_group_bits > max_grp_bits) {
cpi->twopass.kf_group_bits = max_grp_bits;
}
/* Additional special case for CBR if buffer is getting full. */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level;
int64_t buffer_lvl = cpi->buffer_level;
/* If the buffer is near or above the optimal and this kf group is
* not being allocated much then increase the allocation a bit.
*/
if (buffer_lvl >= opt_buffer_lvl) {
int64_t high_water_mark =
(opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1;
int64_t av_group_bits;
/* Av bits per frame * number of frames */
av_group_bits = (int64_t)cpi->av_per_frame_bandwidth *
(int64_t)cpi->twopass.frames_to_key;
/* We are at or above the maximum. */
if (cpi->buffer_level >= high_water_mark) {
int64_t min_group_bits;
min_group_bits =
av_group_bits + (int64_t)(buffer_lvl - high_water_mark);
if (cpi->twopass.kf_group_bits < min_group_bits) {
cpi->twopass.kf_group_bits = min_group_bits;
}
}
/* We are above optimal but below the maximum */
else if (cpi->twopass.kf_group_bits < av_group_bits) {
int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits;
cpi->twopass.kf_group_bits +=
(int64_t)((double)bits_below_av *
(double)(buffer_lvl - opt_buffer_lvl) /
(double)(high_water_mark - opt_buffer_lvl));
}
}
}
} else {
cpi->twopass.kf_group_bits = 0;
}
/* Reset the first pass file position */
reset_fpf_position(cpi, start_position);
/* determine how big to make this keyframe based on how well the
* subsequent frames use inter blocks
*/
decay_accumulator = 1.0;
boost_score = 0.0;
for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
double r;
if (EOF == input_stats(cpi, &next_frame)) break;
if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) {
r = (IIKFACTOR2 * next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
} else {
r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
}
if (r > RMAX) r = RMAX;
/* How fast is prediction quality decaying */
loop_decay_rate = get_prediction_decay_rate(&next_frame);
decay_accumulator = decay_accumulator * loop_decay_rate;
decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator;
boost_score += (decay_accumulator * r);
if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) {
break;
}
old_boost_score = boost_score;
}
if (1) {
FIRSTPASS_STATS sectionstats;
double Ratio;
zero_stats(§ionstats);
reset_fpf_position(cpi, start_position);
for (i = 0; i < cpi->twopass.frames_to_key; ++i) {
input_stats(cpi, &next_frame);
accumulate_stats(§ionstats, &next_frame);
}
avg_stats(§ionstats);
cpi->twopass.section_intra_rating =
(unsigned int)(sectionstats.intra_error /
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
Ratio = sectionstats.intra_error /
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error);
cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025);
if (cpi->twopass.section_max_qfactor < 0.80) {
cpi->twopass.section_max_qfactor = 0.80;
}
}
/* When using CBR apply additional buffer fullness related upper limits */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
double max_boost;
if (cpi->drop_frames_allowed) {
int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark *
(cpi->oxcf.optimal_buffer_level / 100));
if (cpi->buffer_level > df_buffer_level) {
max_boost =
((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) /
DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
} else {
max_boost = 0.0;
}
} else if (cpi->buffer_level > 0) {
max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) /
DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth);
} else {
max_boost = 0.0;
}
if (boost_score > max_boost) boost_score = max_boost;
}
/* Reset the first pass file position */
reset_fpf_position(cpi, start_position);
/* Work out how many bits to allocate for the key frame itself */
if (1) {
int kf_boost = (int)boost_score;
int allocation_chunks;
int Counter = cpi->twopass.frames_to_key;
int alt_kf_bits;
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
/* Min boost based on kf interval */
#if 0
while ((kf_boost < 48) && (Counter > 0))
{
Counter -= 2;
kf_boost ++;
}
#endif
if (kf_boost < 48) {
kf_boost += ((Counter + 1) >> 1);
if (kf_boost > 48) kf_boost = 48;
}
/* bigger frame sizes need larger kf boosts, smaller frames smaller
* boosts...
*/
if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) {
kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240);
} else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) {
kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height);
}
/* Min KF boost */
kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */
if (kf_boost < 250) kf_boost = 250;
/*
* We do three calculations for kf size.
* The first is based on the error score for the whole kf group.
* The second (optionaly) on the key frames own error if this is
* smaller than the average for the group.
* The final one insures that the frame receives at least the
* allocation it would have received based on its own error score vs
* the error score remaining
* Special case if the sequence appears almost totaly static
* as measured by the decay accumulator. In this case we want to
* spend almost all of the bits on the key frame.
* cpi->twopass.frames_to_key-1 because key frame itself is taken
* care of by kf_boost.
*/
if (decay_accumulator >= 0.99) {
allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
} else {
allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
}
/* Normalize Altboost and allocations chunck down to prevent overflow */
while (kf_boost > 1000) {
kf_boost /= 2;
allocation_chunks /= 2;
}
cpi->twopass.kf_group_bits =
(cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
/* Calculate the number of bits to be spent on the key frame */
cpi->twopass.kf_bits =
(int)((double)kf_boost *
((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
/* Apply an additional limit for CBR */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) {
cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2);
}
}
/* If the key frame is actually easier than the average for the
* kf group (which does sometimes happen... eg a blank intro frame)
* Then use an alternate calculation based on the kf error score
* which should give a smaller key frame.
*/
if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
double alt_kf_grp_bits =
((double)cpi->twopass.bits_left *
(kf_mod_err * (double)cpi->twopass.frames_to_key) /
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
alt_kf_bits = (int)((double)kf_boost *
(alt_kf_grp_bits / (double)allocation_chunks));
if (cpi->twopass.kf_bits > alt_kf_bits) {
cpi->twopass.kf_bits = alt_kf_bits;
}
}
/* Else if it is much harder than other frames in the group make sure
* it at least receives an allocation in keeping with its relative
* error score
*/
else {
alt_kf_bits = (int)((double)cpi->twopass.bits_left *
(kf_mod_err / DOUBLE_DIVIDE_CHECK(
cpi->twopass.modified_error_left)));
if (alt_kf_bits > cpi->twopass.kf_bits) {
cpi->twopass.kf_bits = alt_kf_bits;
}
}
cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
/* Add in the minimum frame allowance */
cpi->twopass.kf_bits += cpi->min_frame_bandwidth;
/* Peer frame bit target for this frame */
cpi->per_frame_bandwidth = cpi->twopass.kf_bits;
/* Convert to a per second bitrate */
cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate);
}
/* Note the total error score of the kf group minus the key frame itself */
cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
/* Adjust the count of total modified error left. The count of bits left
* is adjusted elsewhere based on real coded frame sizes
*/
cpi->twopass.modified_error_left -= kf_group_err;
if (cpi->oxcf.allow_spatial_resampling) {
int resample_trigger = 0;
int last_kf_resampled = 0;
int kf_q;
int scale_val = 0;
int hr, hs, vr, vs;
int new_width = cpi->oxcf.Width;
int new_height = cpi->oxcf.Height;
int projected_buffer_level;
int tmp_q;
double projected_bits_perframe;
double group_iiratio = (kf_group_intra_err - first_frame.intra_error) /
(kf_group_coded_err - first_frame.coded_error);
double err_per_frame = kf_group_err / cpi->twopass.frames_to_key;
double bits_per_frame;
double av_bits_per_frame;
double effective_size_ratio;
if ((cpi->common.Width != cpi->oxcf.Width) ||
(cpi->common.Height != cpi->oxcf.Height)) {
last_kf_resampled = 1;
}
/* Set back to unscaled by defaults */
cpi->common.horiz_scale = VP8E_NORMAL;
cpi->common.vert_scale = VP8E_NORMAL;
/* Calculate Average bits per frame. */
av_bits_per_frame =
cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK(cpi->framerate);
/* CBR... Use the clip average as the target for deciding resample */
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
bits_per_frame = av_bits_per_frame;
}
/* In VBR we want to avoid downsampling in easy section unless we
* are under extreme pressure So use the larger of target bitrate
* for this section or average bitrate for sequence
*/
else {
/* This accounts for how hard the section is... */
bits_per_frame =
(double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key);
/* Don't turn to resampling in easy sections just because they
* have been assigned a small number of bits
*/
if (bits_per_frame < av_bits_per_frame) {
bits_per_frame = av_bits_per_frame;
}
}
/* bits_per_frame should comply with our minimum */
if (bits_per_frame < (cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100)) {
bits_per_frame = (cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
}
/* Work out if spatial resampling is necessary */
kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame,
group_iiratio);
/* If we project a required Q higher than the maximum allowed Q then
* make a guess at the actual size of frames in this section
*/
projected_bits_perframe = bits_per_frame;
tmp_q = kf_q;
while (tmp_q > cpi->worst_quality) {
projected_bits_perframe *= 1.04;
tmp_q--;
}
/* Guess at buffer level at the end of the section */
projected_buffer_level =
(int)(cpi->buffer_level -
(int)((projected_bits_perframe - av_bits_per_frame) *
cpi->twopass.frames_to_key));
/* The trigger for spatial resampling depends on the various
* parameters such as whether we are streaming (CBR) or VBR.
*/
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
/* Trigger resample if we are projected to fall below down
* sample level or resampled last time and are projected to
* remain below the up sample level
*/
if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark *
cpi->oxcf.optimal_buffer_level / 100)) ||
(last_kf_resampled &&
(projected_buffer_level < (cpi->oxcf.resample_up_water_mark *
cpi->oxcf.optimal_buffer_level / 100)))) {
resample_trigger = 1;
} else {
resample_trigger = 0;
}
} else {
int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count *
cpi->oxcf.target_bandwidth /
DOUBLE_DIVIDE_CHECK(cpi->framerate));
int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level;
/* If triggered last time the threshold for triggering again is
* reduced:
*
* Projected Q higher than allowed and Overspend > 5% of total
* bits
*/
if ((last_kf_resampled && (kf_q > cpi->worst_quality)) ||
((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) {
resample_trigger = 1;
} else {
resample_trigger = 0;
}
}
if (resample_trigger) {
while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) {
scale_val++;
cpi->common.vert_scale = vscale_lookup[scale_val];
cpi->common.horiz_scale = hscale_lookup[scale_val];
Scale2Ratio(cpi->common.horiz_scale, &hr, &hs);
Scale2Ratio(cpi->common.vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
/* Reducing the area to 1/4 does not reduce the complexity
* (err_per_frame) to 1/4... effective_sizeratio attempts
* to provide a crude correction for this
*/
effective_size_ratio = (double)(new_width * new_height) /
(double)(cpi->oxcf.Width * cpi->oxcf.Height);
effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0;
/* Now try again and see what Q we get with the smaller
* image size
*/
kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio,
(int)bits_per_frame, group_iiratio);
}
}
if ((cpi->common.Width != new_width) ||
(cpi->common.Height != new_height)) {
cpi->common.Width = new_width;
cpi->common.Height = new_height;
vp8_alloc_compressor_data(cpi);
}
}
}
|