1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/common/onyxc_int.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "vp8/encoder/quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "temporal_filter.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
#include "vpx_ports/vpx_timer.h"
#include <math.h>
#include <limits.h>
#define ALT_REF_MC_ENABLED 1 /* toggle MC in AltRef filtering */
#define ALT_REF_SUBPEL_ENABLED 1 /* toggle subpel in MC AltRef filtering */
#if VP8_TEMPORAL_ALT_REF
static void vp8_temporal_filter_predictors_mb_c(
MACROBLOCKD *x, unsigned char *y_mb_ptr, unsigned char *u_mb_ptr,
unsigned char *v_mb_ptr, int stride, int mv_row, int mv_col,
unsigned char *pred) {
int offset;
unsigned char *yptr, *uptr, *vptr;
/* Y */
yptr = y_mb_ptr + (mv_row >> 3) * stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7) {
x->subpixel_predict16x16(yptr, stride, mv_col & 7, mv_row & 7, &pred[0],
16);
} else {
vp8_copy_mem16x16(yptr, stride, &pred[0], 16);
}
/* U & V */
mv_row >>= 1;
mv_col >>= 1;
stride = (stride + 1) >> 1;
offset = (mv_row >> 3) * stride + (mv_col >> 3);
uptr = u_mb_ptr + offset;
vptr = v_mb_ptr + offset;
if ((mv_row | mv_col) & 7) {
x->subpixel_predict8x8(uptr, stride, mv_col & 7, mv_row & 7, &pred[256], 8);
x->subpixel_predict8x8(vptr, stride, mv_col & 7, mv_row & 7, &pred[320], 8);
} else {
vp8_copy_mem8x8(uptr, stride, &pred[256], 8);
vp8_copy_mem8x8(vptr, stride, &pred[320], 8);
}
}
void vp8_temporal_filter_apply_c(unsigned char *frame1, unsigned int stride,
unsigned char *frame2, unsigned int block_size,
int strength, int filter_weight,
unsigned int *accumulator,
unsigned short *count) {
unsigned int i, j, k;
int modifier;
int byte = 0;
const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
for (i = 0, k = 0; i < block_size; ++i) {
for (j = 0; j < block_size; j++, k++) {
int src_byte = frame1[byte];
int pixel_value = *frame2++;
modifier = src_byte - pixel_value;
/* This is an integer approximation of:
* float coeff = (3.0 * modifer * modifier) / pow(2, strength);
* modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
*/
modifier *= modifier;
modifier *= 3;
modifier += rounding;
modifier >>= strength;
if (modifier > 16) modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_size;
}
}
#if ALT_REF_MC_ENABLED
static int vp8_temporal_filter_find_matching_mb_c(VP8_COMP *cpi,
YV12_BUFFER_CONFIG *arf_frame,
YV12_BUFFER_CONFIG *frame_ptr,
int mb_offset,
int error_thresh) {
MACROBLOCK *x = &cpi->mb;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
int_mv best_ref_mv1;
int_mv best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
/* Save input state */
unsigned char **base_src = b->base_src;
int src = b->src;
int src_stride = b->src_stride;
unsigned char *base_pre = x->e_mbd.pre.y_buffer;
int pre = d->offset;
int pre_stride = x->e_mbd.pre.y_stride;
(void)error_thresh;
best_ref_mv1.as_int = 0;
best_ref_mv1_full.as_mv.col = best_ref_mv1.as_mv.col >> 3;
best_ref_mv1_full.as_mv.row = best_ref_mv1.as_mv.row >> 3;
/* Setup frame pointers */
b->base_src = &arf_frame->y_buffer;
b->src_stride = arf_frame->y_stride;
b->src = mb_offset;
x->e_mbd.pre.y_buffer = frame_ptr->y_buffer;
x->e_mbd.pre.y_stride = frame_ptr->y_stride;
d->offset = mb_offset;
/* Further step/diamond searches as necessary */
if (cpi->Speed < 8) {
step_param = cpi->sf.first_step + (cpi->Speed > 5);
} else {
step_param = cpi->sf.first_step + 2;
}
/* TODO Check that the 16x16 vf & sdf are selected here */
/* Ignore mv costing by sending NULL cost arrays */
bestsme =
vp8_hex_search(x, b, d, &best_ref_mv1_full, &d->bmi.mv, step_param, sadpb,
&cpi->fn_ptr[BLOCK_16X16], NULL, &best_ref_mv1);
(void)bestsme; // Ignore unused return value.
#if ALT_REF_SUBPEL_ENABLED
/* Try sub-pixel MC? */
{
int distortion;
unsigned int sse;
/* Ignore mv costing by sending NULL cost array */
bestsme = cpi->find_fractional_mv_step(
x, b, d, &d->bmi.mv, &best_ref_mv1, x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16], NULL, &distortion, &sse);
}
#endif
/* Save input state */
b->base_src = base_src;
b->src = src;
b->src_stride = src_stride;
x->e_mbd.pre.y_buffer = base_pre;
d->offset = pre;
x->e_mbd.pre.y_stride = pre_stride;
return bestsme;
}
#endif
static void vp8_temporal_filter_iterate_c(VP8_COMP *cpi, int frame_count,
int alt_ref_index, int strength) {
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight;
int mb_cols = cpi->common.mb_cols;
int mb_rows = cpi->common.mb_rows;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 + 8 * 8 + 8 * 8]);
DECLARE_ALIGNED(16, unsigned short, count[16 * 16 + 8 * 8 + 8 * 8]);
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
unsigned char *dst1, *dst2;
DECLARE_ALIGNED(16, unsigned char, predictor[16 * 16 + 8 * 8 + 8 * 8]);
/* Save input state */
unsigned char *y_buffer = mbd->pre.y_buffer;
unsigned char *u_buffer = mbd->pre.u_buffer;
unsigned char *v_buffer = mbd->pre.v_buffer;
for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
#if ALT_REF_MC_ENABLED
/* Source frames are extended to 16 pixels. This is different than
* L/A/G reference frames that have a border of 32 (VP8BORDERINPIXELS)
* A 6 tap filter is used for motion search. This requires 2 pixels
* before and 3 pixels after. So the largest Y mv on a border would
* then be 16 - 3. The UV blocks are half the size of the Y and
* therefore only extended by 8. The largest mv that a UV block
* can support is 8 - 3. A UV mv is half of a Y mv.
* (16 - 3) >> 1 == 6 which is greater than 8 - 3.
* To keep the mv in play for both Y and UV planes the max that it
* can be on a border is therefore 16 - 5.
*/
cpi->mb.mv_row_min = -((mb_row * 16) + (16 - 5));
cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16) + (16 - 5);
#endif
for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
int i, j, k;
int stride;
memset(accumulator, 0, 384 * sizeof(unsigned int));
memset(count, 0, 384 * sizeof(unsigned short));
#if ALT_REF_MC_ENABLED
cpi->mb.mv_col_min = -((mb_col * 16) + (16 - 5));
cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16) + (16 - 5);
#endif
for (frame = 0; frame < frame_count; ++frame) {
if (cpi->frames[frame] == NULL) continue;
mbd->block[0].bmi.mv.as_mv.row = 0;
mbd->block[0].bmi.mv.as_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
int err = 0;
#if ALT_REF_MC_ENABLED
#define THRESH_LOW 10000
#define THRESH_HIGH 20000
/* Find best match in this frame by MC */
err = vp8_temporal_filter_find_matching_mb_c(
cpi, cpi->frames[alt_ref_index], cpi->frames[frame], mb_y_offset,
THRESH_LOW);
#endif
/* Assign higher weight to matching MB if it's error
* score is lower. If not applying MC default behavior
* is to weight all MBs equal.
*/
filter_weight = err < THRESH_LOW ? 2 : err < THRESH_HIGH ? 1 : 0;
}
if (filter_weight != 0) {
/* Construct the predictors */
vp8_temporal_filter_predictors_mb_c(
mbd, cpi->frames[frame]->y_buffer + mb_y_offset,
cpi->frames[frame]->u_buffer + mb_uv_offset,
cpi->frames[frame]->v_buffer + mb_uv_offset,
cpi->frames[frame]->y_stride, mbd->block[0].bmi.mv.as_mv.row,
mbd->block[0].bmi.mv.as_mv.col, predictor);
/* Apply the filter (YUV) */
vp8_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, strength, filter_weight,
accumulator, count);
vp8_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
predictor + 256, 8, strength, filter_weight,
accumulator + 256, count + 256);
vp8_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
predictor + 320, 8, strength, filter_weight,
accumulator + 320, count + 320);
}
}
/* Normalize filter output to produce AltRef frame */
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; ++i) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
/* move to next pixel */
byte++;
}
byte += stride - 16;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < 8; ++i) {
for (j = 0; j < 8; j++, k++) {
int m = k + 64;
/* U */
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (unsigned char)pval;
/* V */
pval = accumulator[m] + (count[m] >> 1);
pval *= cpi->fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (unsigned char)pval;
/* move to next pixel */
byte++;
}
byte += stride - 8;
}
mb_y_offset += 16;
mb_uv_offset += 8;
}
mb_y_offset += 16 * (f->y_stride - mb_cols);
mb_uv_offset += 8 * (f->uv_stride - mb_cols);
}
/* Restore input state */
mbd->pre.y_buffer = y_buffer;
mbd->pre.u_buffer = u_buffer;
mbd->pre.v_buffer = v_buffer;
}
void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance) {
int frame = 0;
int num_frames_backward = 0;
int num_frames_forward = 0;
int frames_to_blur_backward = 0;
int frames_to_blur_forward = 0;
int frames_to_blur = 0;
int start_frame = 0;
int strength = cpi->oxcf.arnr_strength;
int blur_type = cpi->oxcf.arnr_type;
int max_frames = cpi->active_arnr_frames;
num_frames_backward = distance;
num_frames_forward =
vp8_lookahead_depth(cpi->lookahead) - (num_frames_backward + 1);
switch (blur_type) {
case 1:
/* Backward Blur */
frames_to_blur_backward = num_frames_backward;
if (frames_to_blur_backward >= max_frames) {
frames_to_blur_backward = max_frames - 1;
}
frames_to_blur = frames_to_blur_backward + 1;
break;
case 2:
/* Forward Blur */
frames_to_blur_forward = num_frames_forward;
if (frames_to_blur_forward >= max_frames) {
frames_to_blur_forward = max_frames - 1;
}
frames_to_blur = frames_to_blur_forward + 1;
break;
case 3:
default:
/* Center Blur */
frames_to_blur_forward = num_frames_forward;
frames_to_blur_backward = num_frames_backward;
if (frames_to_blur_forward > frames_to_blur_backward) {
frames_to_blur_forward = frames_to_blur_backward;
}
if (frames_to_blur_backward > frames_to_blur_forward) {
frames_to_blur_backward = frames_to_blur_forward;
}
/* When max_frames is even we have 1 more frame backward than forward */
if (frames_to_blur_forward > (max_frames - 1) / 2) {
frames_to_blur_forward = ((max_frames - 1) / 2);
}
if (frames_to_blur_backward > (max_frames / 2)) {
frames_to_blur_backward = (max_frames / 2);
}
frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1;
break;
}
start_frame = distance + frames_to_blur_forward;
/* Setup frame pointers, NULL indicates frame not included in filter */
memset(cpi->frames, 0, max_frames * sizeof(YV12_BUFFER_CONFIG *));
for (frame = 0; frame < frames_to_blur; ++frame) {
int which_buffer = start_frame - frame;
struct lookahead_entry *buf =
vp8_lookahead_peek(cpi->lookahead, which_buffer, PEEK_FORWARD);
cpi->frames[frames_to_blur - 1 - frame] = &buf->img;
}
vp8_temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
strength);
}
#endif
|