1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
|
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vp9/common/vp9_loopfilter.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_seg_common.h"
// 64 bit masks for left transform size. Each 1 represents a position where
// we should apply a loop filter across the left border of an 8x8 block
// boundary.
//
// In the case of TX_16X16-> ( in low order byte first we end up with
// a mask that looks like this
//
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
// 10101010
//
// A loopfilter should be applied to every other 8x8 horizontally.
static const uint64_t left_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x5555555555555555ULL, // TX_16x16
0x1111111111111111ULL, // TX_32x32
};
// 64 bit masks for above transform size. Each 1 represents a position where
// we should apply a loop filter across the top border of an 8x8 block
// boundary.
//
// In the case of TX_32x32 -> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111
// 00000000
// 00000000
// 00000000
// 11111111
// 00000000
// 00000000
// 00000000
//
// A loopfilter should be applied to every other 4 the row vertically.
static const uint64_t above_64x64_txform_mask[TX_SIZES] = {
0xffffffffffffffffULL, // TX_4X4
0xffffffffffffffffULL, // TX_8x8
0x00ff00ff00ff00ffULL, // TX_16x16
0x000000ff000000ffULL, // TX_32x32
};
// 64 bit masks for prediction sizes (left). Each 1 represents a position
// where left border of an 8x8 block. These are aligned to the right most
// appropriate bit, and then shifted into place.
//
// In the case of TX_16x32 -> ( low order byte first ) we end up with
// a mask that looks like this :
//
// 10000000
// 10000000
// 10000000
// 10000000
// 00000000
// 00000000
// 00000000
// 00000000
static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4,
0x0000000000000001ULL, // BLOCK_4X8,
0x0000000000000001ULL, // BLOCK_8X4,
0x0000000000000001ULL, // BLOCK_8X8,
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000001ULL, // BLOCK_16X8,
0x0000000000000101ULL, // BLOCK_16X16,
0x0000000001010101ULL, // BLOCK_16X32,
0x0000000000000101ULL, // BLOCK_32X16,
0x0000000001010101ULL, // BLOCK_32X32,
0x0101010101010101ULL, // BLOCK_32X64,
0x0000000001010101ULL, // BLOCK_64X32,
0x0101010101010101ULL, // BLOCK_64X64
};
// 64 bit mask to shift and set for each prediction size.
static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000001ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000003ULL, // BLOCK_16X16
0x0000000000000003ULL, // BLOCK_16X32,
0x000000000000000fULL, // BLOCK_32X16,
0x000000000000000fULL, // BLOCK_32X32,
0x000000000000000fULL, // BLOCK_32X64,
0x00000000000000ffULL, // BLOCK_64X32,
0x00000000000000ffULL, // BLOCK_64X64
};
// 64 bit mask to shift and set for each prediction size. A bit is set for
// each 8x8 block that would be in the left most block of the given block
// size in the 64x64 block.
static const uint64_t size_mask[BLOCK_SIZES] = {
0x0000000000000001ULL, // BLOCK_4X4
0x0000000000000001ULL, // BLOCK_4X8
0x0000000000000001ULL, // BLOCK_8X4
0x0000000000000001ULL, // BLOCK_8X8
0x0000000000000101ULL, // BLOCK_8X16,
0x0000000000000003ULL, // BLOCK_16X8
0x0000000000000303ULL, // BLOCK_16X16
0x0000000003030303ULL, // BLOCK_16X32,
0x0000000000000f0fULL, // BLOCK_32X16,
0x000000000f0f0f0fULL, // BLOCK_32X32,
0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64,
0x00000000ffffffffULL, // BLOCK_64X32,
0xffffffffffffffffULL, // BLOCK_64X64
};
// These are used for masking the left and above borders.
static const uint64_t left_border = 0x1111111111111111ULL;
static const uint64_t above_border = 0x000000ff000000ffULL;
// 16 bit masks for uv transform sizes.
static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x5555, // TX_16x16
0x1111, // TX_32x32
};
static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = {
0xffff, // TX_4X4
0xffff, // TX_8x8
0x0f0f, // TX_16x16
0x000f, // TX_32x32
};
// 16 bit left mask to shift and set for each uv prediction size.
static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4,
0x0001, // BLOCK_4X8,
0x0001, // BLOCK_8X4,
0x0001, // BLOCK_8X8,
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8,
0x0001, // BLOCK_16X16,
0x0011, // BLOCK_16X32,
0x0001, // BLOCK_32X16,
0x0011, // BLOCK_32X32,
0x1111, // BLOCK_32X64
0x0011, // BLOCK_64X32,
0x1111, // BLOCK_64X64
};
// 16 bit above mask to shift and set for uv each prediction size.
static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0001, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0003, // BLOCK_32X32,
0x0003, // BLOCK_32X64,
0x000f, // BLOCK_64X32,
0x000f, // BLOCK_64X64
};
// 64 bit mask to shift and set for each uv prediction size
static const uint16_t size_mask_uv[BLOCK_SIZES] = {
0x0001, // BLOCK_4X4
0x0001, // BLOCK_4X8
0x0001, // BLOCK_8X4
0x0001, // BLOCK_8X8
0x0001, // BLOCK_8X16,
0x0001, // BLOCK_16X8
0x0001, // BLOCK_16X16
0x0011, // BLOCK_16X32,
0x0003, // BLOCK_32X16,
0x0033, // BLOCK_32X32,
0x3333, // BLOCK_32X64,
0x00ff, // BLOCK_64X32,
0xffff, // BLOCK_64X64
};
static const uint16_t left_border_uv = 0x1111;
static const uint16_t above_border_uv = 0x000f;
static const int mode_lf_lut[MB_MODE_COUNT] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
};
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
const MODE_INFO *mi) {
return lfi_n->lvl[mi->segment_id][mi->ref_frame[0]][mode_lf_lut[mi->mode]];
}
void vp9_loop_filter_init(VP9_COMMON *cm) {
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
const int scale = 1 << (default_filt_lvl >> 5);
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update limits if sharpness has changed
if (lf->last_sharpness_level != lf->sharpness_level) {
update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
}
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
int lvl_seg = default_filt_lvl;
if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
lvl_seg = clamp(
seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0,
MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
} else {
int ref, mode;
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
static void filter_selectively_vert_row2(
int subsampling_factor, uint8_t *s, int pitch, unsigned int mask_16x16,
unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
const int lfl_forward = subsampling_factor ? 4 : 8;
const unsigned int dual_one = 1 | (1 << lfl_forward);
unsigned int mask;
uint8_t *ss[2];
ss[0] = s;
for (mask =
(mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
mask; mask = (mask & ~dual_one) >> 1) {
if (mask & dual_one) {
const loop_filter_thresh *lfis[2];
lfis[0] = lfthr + *lfl;
lfis[1] = lfthr + *(lfl + lfl_forward);
ss[1] = ss[0] + 8 * pitch;
if (mask_16x16 & dual_one) {
if ((mask_16x16 & dual_one) == dual_one) {
vpx_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
vpx_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr);
}
}
if (mask_8x8 & dual_one) {
if ((mask_8x8 & dual_one) == dual_one) {
vpx_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr, lfis[1]->mblim,
lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
vpx_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
if (mask_4x4 & dual_one) {
if ((mask_4x4 & dual_one) == dual_one) {
vpx_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim,
lfis[0]->hev_thr, lfis[1]->mblim,
lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
vpx_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
if (mask_4x4_int & dual_one) {
if ((mask_4x4_int & dual_one) == dual_one) {
vpx_lpf_vertical_4_dual(
ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
vpx_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr);
}
}
}
ss[0] += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_vert_row2(
int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16,
unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff;
const int lfl_forward = subsampling_factor ? 4 : 8;
const unsigned int dual_one = 1 | (1 << lfl_forward);
unsigned int mask;
uint16_t *ss[2];
ss[0] = s;
for (mask =
(mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff;
mask; mask = (mask & ~dual_one) >> 1) {
if (mask & dual_one) {
const loop_filter_thresh *lfis[2];
lfis[0] = lfthr + *lfl;
lfis[1] = lfthr + *(lfl + lfl_forward);
ss[1] = ss[0] + 8 * pitch;
if (mask_16x16 & dual_one) {
if ((mask_16x16 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim,
lfis[0]->lim, lfis[0]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)];
vpx_highbd_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_8x8 & dual_one) {
if ((mask_8x8 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_8_dual(
ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)];
vpx_highbd_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_4x4 & dual_one) {
if ((mask_4x4 & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_4_dual(
ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)];
vpx_highbd_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
if (mask_4x4_int & dual_one) {
if ((mask_4x4_int & dual_one) == dual_one) {
vpx_highbd_lpf_vertical_4_dual(
ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr,
lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd);
} else {
const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)];
vpx_highbd_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch,
lfi->mblim, lfi->lim, lfi->hev_thr, bd);
}
}
}
ss[0] += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void filter_selectively_horiz(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
count = 1;
if (mask & 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
vpx_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
count = 2;
} else {
vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
if ((mask_4x4_int & 3) == 3) {
vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr);
} else {
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
else if (mask_4x4_int & 2)
vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr);
}
count = 2;
} else {
vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
if (mask_4x4_int & 1)
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
} else {
vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_horiz(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
unsigned int mask;
int count;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= count) {
count = 1;
if (mask & 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask_16x16 & 1) {
if ((mask_16x16 & 3) == 3) {
vpx_highbd_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
count = 2;
} else {
vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
} else if (mask_8x8 & 1) {
if ((mask_8x8 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
vpx_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & 3) == 3) {
// Next block's thresholds.
const loop_filter_thresh *lfin = lfthr + *(lfl + 1);
vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr, bd);
if ((mask_4x4_int & 3) == 3) {
vpx_highbd_lpf_horizontal_4_dual(
s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
lfin->mblim, lfin->lim, lfin->hev_thr, bd);
} else {
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
} else if (mask_4x4_int & 2) {
vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
}
count = 2;
} else {
vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
if (mask_4x4_int & 1) {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim,
lfi->lim, lfi->hev_thr, bd);
}
}
} else {
vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
}
s += 8 * count;
lfl += count;
mask_16x16 >>= count;
mask_8x8 >>= count;
mask_4x4 >>= count;
mask_4x4_int >>= count;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// This function ors into the current lfm structure, where to do loop
// filters for the specific mi we are looking at. It uses information
// including the block_size_type (32x16, 32x32, etc.), the transform size,
// whether there were any coefficients encoded, and the loop filter strength
// block we are currently looking at. Shift is used to position the
// 1's we produce.
static void build_masks(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
const int shift_uv, LOOP_FILTER_MASK *lfm) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
const int filter_level = get_filter_level(lfi_n, mi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mi->skip && is_inter_block(mi)) return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
static void build_y_mask(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const int filter_level = get_filter_level(lfi_n, mi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mi->skip && is_inter_block(mi)) return;
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
}
void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
LOOP_FILTER_MASK *lfm) {
int i;
// The largest loopfilter we have is 16x16 so we use the 16x16 mask
// for 32x32 transforms also.
lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
// We do at least 8 tap filter on every 32x32 even if the transform size
// is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
// remove it from the 4x4.
lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
lfm->left_y[TX_4X4] &= ~left_border;
lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
lfm->above_y[TX_4X4] &= ~above_border;
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
lfm->left_uv[TX_4X4] &= ~left_border_uv;
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
lfm->above_uv[TX_4X4] &= ~above_border_uv;
// We do some special edge handling.
if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
const uint64_t rows = cm->mi_rows - mi_row;
// Each pixel inside the border gets a 1,
const uint64_t mask_y = (((uint64_t)1 << (rows << 3)) - 1);
const uint16_t mask_uv = (((uint16_t)1 << (((rows + 1) >> 1) << 2)) - 1);
// Remove values completely outside our border.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv;
// We don't apply a wide loop filter on the last uv block row. If set
// apply the shorter one instead.
if (rows == 1) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
lfm->above_uv[TX_16X16] = 0;
}
if (rows == 5) {
lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
}
}
if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
const uint64_t columns = cm->mi_cols - mi_col;
// Each pixel inside the border gets a 1, the multiply copies the border
// to where we need it.
const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL;
const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
// Internal edges are not applied on the last column of the image so
// we mask 1 more for the internal edges
const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
// Remove the bits outside the image edge.
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= mask_y;
lfm->above_y[i] &= mask_y;
lfm->left_uv[i] &= mask_uv;
lfm->above_uv[i] &= mask_uv;
}
lfm->int_4x4_y &= mask_y;
lfm->int_4x4_uv &= mask_uv_int;
// We don't apply a wide loop filter on the last uv column. If set
// apply the shorter one instead.
if (columns == 1) {
lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
lfm->left_uv[TX_16X16] = 0;
}
if (columns == 5) {
lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
}
}
// We don't apply a loop filter on the first column in the image, mask that
// out.
if (mi_col == 0) {
for (i = 0; i < TX_32X32; i++) {
lfm->left_y[i] &= 0xfefefefefefefefeULL;
lfm->left_uv[i] &= 0xeeee;
}
}
// Assert if we try to apply 2 different loop filters at the same position.
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8]));
assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
}
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
MODE_INFO **mi8x8, const int mode_info_stride,
LOOP_FILTER_MASK *lfm) {
int idx_32, idx_16, idx_8;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
MODE_INFO **mip = mi8x8;
MODE_INFO **mip2 = mi8x8;
// These are offsets to the next mi in the 64x64 block. It is what gets
// added to the mi ptr as we go through each loop. It helps us to avoid
// setting up special row and column counters for each index. The last step
// brings us out back to the starting position.
const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4,
-(mode_info_stride << 2) - 4 };
const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2,
-(mode_info_stride << 1) - 2 };
const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 };
// Following variables represent shifts to position the current block
// mask over the appropriate block. A shift of 36 to the left will move
// the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
// 4 rows to the appropriate spot.
const int shift_32_y[] = { 0, 4, 32, 36 };
const int shift_16_y[] = { 0, 2, 16, 18 };
const int shift_8_y[] = { 0, 1, 8, 9 };
const int shift_32_uv[] = { 0, 2, 8, 10 };
const int shift_16_uv[] = { 0, 1, 4, 5 };
const int max_rows =
(mi_row + MI_BLOCK_SIZE > cm->mi_rows ? cm->mi_rows - mi_row
: MI_BLOCK_SIZE);
const int max_cols =
(mi_col + MI_BLOCK_SIZE > cm->mi_cols ? cm->mi_cols - mi_col
: MI_BLOCK_SIZE);
vp9_zero(*lfm);
assert(mip[0] != NULL);
switch (mip[0]->sb_type) {
case BLOCK_64X64: build_masks(lfi_n, mip[0], 0, 0, lfm); break;
case BLOCK_64X32:
build_masks(lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + mode_info_stride * 4;
if (4 >= max_rows) break;
build_masks(lfi_n, mip2[0], 32, 8, lfm);
break;
case BLOCK_32X64:
build_masks(lfi_n, mip[0], 0, 0, lfm);
mip2 = mip + 4;
if (4 >= max_cols) break;
build_masks(lfi_n, mip2[0], 4, 2, lfm);
break;
default:
for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
const int shift_y_32 = shift_32_y[idx_32];
const int shift_uv_32 = shift_32_uv[idx_32];
const int mi_32_col_offset = ((idx_32 & 1) << 2);
const int mi_32_row_offset = ((idx_32 >> 1) << 2);
if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_32X32:
build_masks(lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
break;
case BLOCK_32X16:
build_masks(lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_row_offset + 2 >= max_rows) continue;
mip2 = mip + mode_info_stride * 2;
build_masks(lfi_n, mip2[0], shift_y_32 + 16, shift_uv_32 + 4, lfm);
break;
case BLOCK_16X32:
build_masks(lfi_n, mip[0], shift_y_32, shift_uv_32, lfm);
if (mi_32_col_offset + 2 >= max_cols) continue;
mip2 = mip + 2;
build_masks(lfi_n, mip2[0], shift_y_32 + 2, shift_uv_32 + 1, lfm);
break;
default:
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y_16 = shift_y_32 + shift_16_y[idx_16];
const int shift_uv_16 = shift_uv_32 + shift_16_uv[idx_16];
const int mi_16_col_offset =
mi_32_col_offset + ((idx_16 & 1) << 1);
const int mi_16_row_offset =
mi_32_row_offset + ((idx_16 >> 1) << 1);
if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
continue;
switch (mip[0]->sb_type) {
case BLOCK_16X16:
build_masks(lfi_n, mip[0], shift_y_16, shift_uv_16, lfm);
break;
case BLOCK_16X8:
build_masks(lfi_n, mip[0], shift_y_16, shift_uv_16, lfm);
if (mi_16_row_offset + 1 >= max_rows) continue;
mip2 = mip + mode_info_stride;
build_y_mask(lfi_n, mip2[0], shift_y_16 + 8, lfm);
break;
case BLOCK_8X16:
build_masks(lfi_n, mip[0], shift_y_16, shift_uv_16, lfm);
if (mi_16_col_offset + 1 >= max_cols) continue;
mip2 = mip + 1;
build_y_mask(lfi_n, mip2[0], shift_y_16 + 1, lfm);
break;
default: {
const int shift_y_8_0 = shift_y_16 + shift_8_y[0];
build_masks(lfi_n, mip[0], shift_y_8_0, shift_uv_16, lfm);
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y_8 = shift_y_16 + shift_8_y[idx_8];
const int mi_8_col_offset =
mi_16_col_offset + ((idx_8 & 1));
const int mi_8_row_offset =
mi_16_row_offset + ((idx_8 >> 1));
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
build_y_mask(lfi_n, mip[0], shift_y_8, lfm);
}
break;
}
}
}
break;
}
}
break;
}
}
static void filter_selectively_vert(
uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_8x8 & 1) {
vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
} else if (mask_4x4 & 1) {
vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
}
if (mask_4x4_int & 1)
vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void highbd_filter_selectively_vert(
uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8,
unsigned int mask_4x4, unsigned int mask_4x4_int,
const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) {
unsigned int mask;
for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask;
mask >>= 1) {
const loop_filter_thresh *lfi = lfthr + *lfl;
if (mask & 1) {
if (mask_16x16 & 1) {
vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_8x8 & 1) {
vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
} else if (mask_4x4 & 1) {
vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
}
}
if (mask_4x4_int & 1)
vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
s += 8;
lfl += 1;
mask_16x16 >>= 1;
mask_8x8 >>= 1;
mask_4x4 >>= 1;
mask_4x4_int >>= 1;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_filter_block_plane_non420(VP9_COMMON *cm,
struct macroblockd_plane *plane,
MODE_INFO **mi_8x8, int mi_row, int mi_col) {
const int ss_x = plane->subsampling_x;
const int ss_y = plane->subsampling_y;
const int row_step = 1 << ss_y;
const int col_step = 1 << ss_x;
const int row_step_stride = cm->mi_stride * row_step;
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
unsigned int mask_16x16[MI_BLOCK_SIZE];
unsigned int mask_8x8[MI_BLOCK_SIZE];
unsigned int mask_4x4[MI_BLOCK_SIZE];
unsigned int mask_4x4_int[MI_BLOCK_SIZE];
uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
int r, c;
vp9_zero(mask_16x16);
vp9_zero(mask_8x8);
vp9_zero(mask_4x4);
vp9_zero(mask_4x4_int);
vp9_zero(lfl);
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
unsigned int mask_16x16_c = 0;
unsigned int mask_8x8_c = 0;
unsigned int mask_4x4_c = 0;
unsigned int border_mask;
// Determine the vertical edges that need filtering
for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
const MODE_INFO *mi = mi_8x8[c];
const BLOCK_SIZE sb_type = mi[0].sb_type;
const int skip_this = mi[0].skip && is_inter_block(mi);
// left edge of current unit is block/partition edge -> no skip
const int block_edge_left =
(num_4x4_blocks_wide_lookup[sb_type] > 1)
? !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1))
: 1;
const int skip_this_c = skip_this && !block_edge_left;
// top edge of current unit is block/partition edge -> no skip
const int block_edge_above =
(num_4x4_blocks_high_lookup[sb_type] > 1)
? !(r & (num_8x8_blocks_high_lookup[sb_type] - 1))
: 1;
const int skip_this_r = skip_this && !block_edge_above;
const TX_SIZE tx_size = get_uv_tx_size(mi, plane);
const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
// Filter level can vary per MI
if (!(lfl[(r << 3) + (c >> ss_x)] = get_filter_level(&cm->lf_info, mi)))
continue;
// Build masks based on the transform size of each block
if (tx_size == TX_32X32) {
if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else if (tx_size == TX_16X16) {
if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
if (!skip_border_4x4_c)
mask_16x16_c |= 1 << (c >> ss_x);
else
mask_8x8_c |= 1 << (c >> ss_x);
}
if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
if (!skip_border_4x4_r)
mask_16x16[r] |= 1 << (c >> ss_x);
else
mask_8x8[r] |= 1 << (c >> ss_x);
}
} else {
// force 8x8 filtering on 32x32 boundaries
if (!skip_this_c) {
if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
mask_8x8_c |= 1 << (c >> ss_x);
else
mask_4x4_c |= 1 << (c >> ss_x);
}
if (!skip_this_r) {
if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
mask_8x8[r] |= 1 << (c >> ss_x);
else
mask_4x4[r] |= 1 << (c >> ss_x);
}
if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
mask_4x4_int[r] |= 1 << (c >> ss_x);
}
}
// Disable filtering on the leftmost column
border_mask = ~(mi_col == 0 ? 1u : 0u);
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_vert(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
mask_16x16_c & border_mask, mask_8x8_c & border_mask,
mask_4x4_c & border_mask, mask_4x4_int[r], cm->lf_info.lfthr,
&lfl[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask,
mask_8x8_c & border_mask,
mask_4x4_c & border_mask, mask_4x4_int[r],
cm->lf_info.lfthr, &lfl[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mi_8x8 += row_step_stride;
}
// Now do horizontal pass
dst->buf = dst0;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16[r];
mask_8x8_r = mask_8x8[r];
mask_4x4_r = mask_4x4[r];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl[r << 3],
(int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
&lfl[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
}
}
void vp9_filter_block_plane_ss00(VP9_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r;
uint64_t mask_16x16 = lfm->left_y[TX_16X16];
uint64_t mask_8x8 = lfm->left_y[TX_8X8];
uint64_t mask_4x4 = lfm->left_y[TX_4X4];
uint64_t mask_4x4_int = lfm->int_4x4_y;
assert(plane->subsampling_x == 0 && plane->subsampling_y == 0);
// Vertical pass: do 2 rows at one time
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
// Disable filtering on the leftmost column.
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
(unsigned int)mask_16x16, (unsigned int)mask_8x8,
(unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
&lfm->lfl_y[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
// Disable filtering on the leftmost column.
filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
(unsigned int)mask_8x8, (unsigned int)mask_4x4,
(unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 16 * dst->stride;
mask_16x16 >>= 16;
mask_8x8 >>= 16;
mask_4x4 >>= 16;
mask_4x4_int >>= 16;
}
// Horizontal pass
dst->buf = dst0;
mask_16x16 = lfm->above_y[TX_16X16];
mask_8x8 = lfm->above_y[TX_8X8];
mask_4x4 = lfm->above_y[TX_4X4];
mask_4x4_int = lfm->int_4x4_y;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xff;
mask_8x8_r = mask_8x8 & 0xff;
mask_4x4_r = mask_4x4 & 0xff;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff, cm->lf_info.lfthr,
&lfm->lfl_y[r << 3], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int & 0xff,
cm->lf_info.lfthr, &lfm->lfl_y[r << 3]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mask_16x16 >>= 8;
mask_8x8 >>= 8;
mask_4x4 >>= 8;
mask_4x4_int >>= 8;
}
}
void vp9_filter_block_plane_ss11(VP9_COMMON *const cm,
struct macroblockd_plane *const plane,
int mi_row, LOOP_FILTER_MASK *lfm) {
struct buf_2d *const dst = &plane->dst;
uint8_t *const dst0 = dst->buf;
int r, c;
uint8_t lfl_uv[16];
uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
uint16_t mask_4x4_int = lfm->int_4x4_uv;
vp9_zero(lfl_uv);
assert(plane->subsampling_x == 1 && plane->subsampling_y == 1);
// Vertical pass: do 2 rows at one time
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
// Disable filtering on the leftmost column.
highbd_filter_selectively_vert_row2(
plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride,
(unsigned int)mask_16x16, (unsigned int)mask_8x8,
(unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr,
&lfl_uv[r << 1], (int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
// Disable filtering on the leftmost column.
filter_selectively_vert_row2(
plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16,
(unsigned int)mask_8x8, (unsigned int)mask_4x4,
(unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfl_uv[r << 1]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 16 * dst->stride;
mask_16x16 >>= 8;
mask_8x8 >>= 8;
mask_4x4 >>= 8;
mask_4x4_int >>= 8;
}
// Horizontal pass
dst->buf = dst0;
mask_16x16 = lfm->above_uv[TX_16X16];
mask_8x8 = lfm->above_uv[TX_8X8];
mask_4x4 = lfm->above_uv[TX_4X4];
mask_4x4_int = lfm->int_4x4_uv;
for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
const unsigned int mask_4x4_int_r =
skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf);
unsigned int mask_16x16_r;
unsigned int mask_8x8_r;
unsigned int mask_4x4_r;
if (mi_row + r == 0) {
mask_16x16_r = 0;
mask_8x8_r = 0;
mask_4x4_r = 0;
} else {
mask_16x16_r = mask_16x16 & 0xf;
mask_8x8_r = mask_8x8 & 0xf;
mask_4x4_r = mask_4x4 & 0xf;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl_uv[r << 1],
(int)cm->bit_depth);
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r,
mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr,
&lfl_uv[r << 1]);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
dst->buf += 8 * dst->stride;
mask_16x16 >>= 4;
mask_8x8 >>= 4;
mask_4x4 >>= 4;
mask_4x4_int >>= 4;
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int start, int stop, int y_only) {
const int num_planes = y_only ? 1 : MAX_MB_PLANE;
enum lf_path path;
int mi_row, mi_col;
if (y_only)
path = LF_PATH_444;
else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
path = LF_PATH_420;
else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
path = LF_PATH_444;
else
path = LF_PATH_SLOW;
for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0);
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) {
int plane;
vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
// TODO(jimbankoski): For 444 only need to do y mask.
vp9_adjust_mask(cm, mi_row, mi_col, lfm);
vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm);
for (plane = 1; plane < num_planes; ++plane) {
switch (path) {
case LF_PATH_420:
vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
mi_row, mi_col);
break;
}
}
}
}
}
void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm,
MACROBLOCKD *xd, int frame_filter_level, int y_only,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only);
}
// Used by the encoder to build the loopfilter masks.
// TODO(slavarnway): Do the encoder the same way the decoder does it and
// build the masks in line as part of the encode process.
void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
int mi_col, mi_row;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
vp9_loop_filter_frame_init(cm, frame_filter_level);
for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) {
MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
// vp9_setup_mask() zeros lfm
vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
get_lfm(&cm->lf, mi_row, mi_col));
}
}
}
// 8x8 blocks in a superblock. A "1" represents the first block in a 16x16
// or greater area.
static const uint8_t first_block_in_16x16[8][8] = {
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 },
{ 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }
};
// This function sets up the bit masks for a block represented
// by mi_row, mi_col in a 64x64 region.
// TODO(SJL): This function only works for yv12.
void vp9_build_mask(VP9_COMMON *cm, const MODE_INFO *mi, int mi_row, int mi_col,
int bw, int bh) {
const BLOCK_SIZE block_size = mi->sb_type;
const TX_SIZE tx_size_y = mi->tx_size;
const loop_filter_info_n *const lfi_n = &cm->lf_info;
const int filter_level = get_filter_level(lfi_n, mi);
const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1];
LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
const int row_in_sb = (mi_row & 7);
const int col_in_sb = (mi_col & 7);
const int shift_y = col_in_sb + (row_in_sb << 3);
const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2);
const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb];
if (!filter_level) {
return;
} else {
int index = shift_y;
int i;
for (i = 0; i < bh; i++) {
memset(&lfm->lfl_y[index], filter_level, bw);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set:
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and V set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (build_uv) {
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
}
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mi->skip && is_inter_block(mi)) return;
// Add a mask for the transform size. The transform size mask is set to
// be correct for a 64x64 prediction block size. Mask to match the size of
// the block we are working on and then shift it into place.
*above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y])
<< shift_y;
*left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y])
<< shift_y;
if (build_uv) {
*above_uv |=
(size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
*left_uv |=
(size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv])
<< shift_uv;
}
// Try to determine what to do with the internal 4x4 block boundaries. These
// differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
// internal ones can be skipped and don't depend on the prediction block size.
if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y;
if (build_uv && tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
void vp9_loop_filter_data_reset(
LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer,
struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) {
lf_data->frame_buffer = frame_buffer;
lf_data->cm = cm;
lf_data->start = 0;
lf_data->stop = 0;
lf_data->y_only = 0;
memcpy(lf_data->planes, planes, sizeof(lf_data->planes));
}
void vp9_reset_lfm(VP9_COMMON *const cm) {
if (cm->lf.filter_level) {
memset(cm->lf.lfm, 0,
((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride *
sizeof(*cm->lf.lfm));
}
}
int vp9_loop_filter_worker(void *arg1, void *unused) {
LFWorkerData *const lf_data = (LFWorkerData *)arg1;
(void)unused;
loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
lf_data->start, lf_data->stop, lf_data->y_only);
return 1;
}
|