1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "vpx_util/vpx_pthread.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_ethread.h"
#include "vp9/encoder/vp9_multi_thread.h"
#include "vp9/encoder/vp9_temporal_filter.h"
void *vp9_enc_grp_get_next_job(MultiThreadHandle *multi_thread_ctxt,
int tile_id) {
RowMTInfo *row_mt_info;
JobQueueHandle *job_queue_hdl = NULL;
void *next = NULL;
JobNode *job_info = NULL;
#if CONFIG_MULTITHREAD
pthread_mutex_t *mutex_handle = NULL;
#endif
row_mt_info = (RowMTInfo *)(&multi_thread_ctxt->row_mt_info[tile_id]);
job_queue_hdl = (JobQueueHandle *)&row_mt_info->job_queue_hdl;
#if CONFIG_MULTITHREAD
mutex_handle = &row_mt_info->job_mutex;
#endif
// lock the mutex for queue access
#if CONFIG_MULTITHREAD
pthread_mutex_lock(mutex_handle);
#endif
next = job_queue_hdl->next;
if (next != NULL) {
JobQueue *job_queue = (JobQueue *)next;
job_info = &job_queue->job_info;
// Update the next job in the queue
job_queue_hdl->next = job_queue->next;
job_queue_hdl->num_jobs_acquired++;
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(mutex_handle);
#endif
return job_info;
}
void vp9_row_mt_alloc_rd_thresh(VP9_COMP *const cpi,
TileDataEnc *const this_tile) {
VP9_COMMON *const cm = &cpi->common;
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
int i;
if (this_tile->row_base_thresh_freq_fact != NULL) {
if (sb_rows <= this_tile->sb_rows) {
return;
}
vpx_free(this_tile->row_base_thresh_freq_fact);
this_tile->row_base_thresh_freq_fact = NULL;
}
CHECK_MEM_ERROR(
&cm->error, this_tile->row_base_thresh_freq_fact,
(int *)vpx_calloc(sb_rows * BLOCK_SIZES * MAX_MODES,
sizeof(*(this_tile->row_base_thresh_freq_fact))));
for (i = 0; i < sb_rows * BLOCK_SIZES * MAX_MODES; i++)
this_tile->row_base_thresh_freq_fact[i] = RD_THRESH_INIT_FACT;
this_tile->sb_rows = sb_rows;
}
void vp9_row_mt_mem_alloc(VP9_COMP *cpi) {
struct VP9Common *cm = &cpi->common;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
int tile_row, tile_col;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
int jobs_per_tile_col, total_jobs;
// Allocate memory that is large enough for all row_mt stages. First pass
// uses 16x16 block size.
jobs_per_tile_col = VPXMAX(cm->mb_rows, sb_rows);
// Calculate the total number of jobs
total_jobs = jobs_per_tile_col * tile_cols;
multi_thread_ctxt->allocated_tile_cols = tile_cols;
multi_thread_ctxt->allocated_tile_rows = tile_rows;
multi_thread_ctxt->allocated_vert_unit_rows = jobs_per_tile_col;
CHECK_MEM_ERROR(&cm->error, multi_thread_ctxt->job_queue,
(JobQueue *)vpx_memalign(32, total_jobs * sizeof(JobQueue)));
#if CONFIG_MULTITHREAD
// Create mutex for each tile
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
RowMTInfo *row_mt_info = &multi_thread_ctxt->row_mt_info[tile_col];
pthread_mutex_init(&row_mt_info->job_mutex, NULL);
}
#endif
// Allocate memory for row based multi-threading
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileDataEnc *this_tile = &cpi->tile_data[tile_col];
vp9_row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, jobs_per_tile_col);
}
// Assign the sync pointer of tile row zero for every tile row > 0
for (tile_row = 1; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
TileDataEnc *this_col_tile = &cpi->tile_data[tile_col];
this_tile->row_mt_sync = this_col_tile->row_mt_sync;
}
}
// Calculate the number of vertical units in the given tile row
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols];
TileInfo *tile_info = &this_tile->tile_info;
multi_thread_ctxt->num_tile_vert_sbs[tile_row] =
get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
}
}
void vp9_row_mt_mem_dealloc(VP9_COMP *cpi) {
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
int tile_col;
#if CONFIG_MULTITHREAD
int tile_row;
#endif
// Deallocate memory for job queue
if (multi_thread_ctxt->job_queue) {
vpx_free(multi_thread_ctxt->job_queue);
multi_thread_ctxt->job_queue = NULL;
}
#if CONFIG_MULTITHREAD
// Destroy mutex for each tile
for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols;
tile_col++) {
RowMTInfo *row_mt_info = &multi_thread_ctxt->row_mt_info[tile_col];
pthread_mutex_destroy(&row_mt_info->job_mutex);
}
#endif
// Free row based multi-threading sync memory
for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols;
tile_col++) {
TileDataEnc *this_tile = &cpi->tile_data[tile_col];
vp9_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);
}
#if CONFIG_MULTITHREAD
for (tile_row = 0; tile_row < multi_thread_ctxt->allocated_tile_rows;
tile_row++) {
for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols;
tile_col++) {
TileDataEnc *this_tile =
&cpi->tile_data[tile_row * multi_thread_ctxt->allocated_tile_cols +
tile_col];
if (this_tile->row_base_thresh_freq_fact != NULL) {
vpx_free(this_tile->row_base_thresh_freq_fact);
this_tile->row_base_thresh_freq_fact = NULL;
}
}
}
#endif
multi_thread_ctxt->allocated_tile_cols = 0;
multi_thread_ctxt->allocated_tile_rows = 0;
multi_thread_ctxt->allocated_vert_unit_rows = 0;
}
void vp9_multi_thread_tile_init(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
int i;
for (i = 0; i < tile_cols; i++) {
TileDataEnc *this_tile = &cpi->tile_data[i];
int jobs_per_tile_col = cpi->oxcf.pass == 1 ? cm->mb_rows : sb_rows;
// Initialize cur_col to -1 for all rows.
memset(this_tile->row_mt_sync.cur_col, -1,
sizeof(*this_tile->row_mt_sync.cur_col) * jobs_per_tile_col);
vp9_zero(this_tile->fp_data);
this_tile->fp_data.image_data_start_row = INVALID_ROW;
}
}
void vp9_assign_tile_to_thread(MultiThreadHandle *multi_thread_ctxt,
int tile_cols, int num_workers) {
int tile_id = 0;
int i;
// Allocating the threads for the tiles
for (i = 0; i < num_workers; i++) {
multi_thread_ctxt->thread_id_to_tile_id[i] = tile_id++;
if (tile_id == tile_cols) tile_id = 0;
}
}
int vp9_get_job_queue_status(MultiThreadHandle *multi_thread_ctxt,
int cur_tile_id) {
RowMTInfo *row_mt_info;
JobQueueHandle *job_queue_hndl;
#if CONFIG_MULTITHREAD
pthread_mutex_t *mutex;
#endif
int num_jobs_remaining;
row_mt_info = &multi_thread_ctxt->row_mt_info[cur_tile_id];
job_queue_hndl = &row_mt_info->job_queue_hdl;
#if CONFIG_MULTITHREAD
mutex = &row_mt_info->job_mutex;
#endif
#if CONFIG_MULTITHREAD
pthread_mutex_lock(mutex);
#endif
num_jobs_remaining =
multi_thread_ctxt->jobs_per_tile_col - job_queue_hndl->num_jobs_acquired;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(mutex);
#endif
return (num_jobs_remaining);
}
void vp9_prepare_job_queue(VP9_COMP *cpi, JOB_TYPE job_type) {
VP9_COMMON *const cm = &cpi->common;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
JobQueue *job_queue = multi_thread_ctxt->job_queue;
const int tile_cols = 1 << cm->log2_tile_cols;
int job_row_num, jobs_per_tile, jobs_per_tile_col = 0, total_jobs;
const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
int tile_col, i;
switch (job_type) {
case ENCODE_JOB: jobs_per_tile_col = sb_rows; break;
case FIRST_PASS_JOB: jobs_per_tile_col = cm->mb_rows; break;
case ARNR_JOB:
jobs_per_tile_col = ((cm->mi_rows + TF_ROUND) >> TF_SHIFT);
break;
default: assert(0);
}
total_jobs = jobs_per_tile_col * tile_cols;
multi_thread_ctxt->jobs_per_tile_col = jobs_per_tile_col;
// memset the entire job queue buffer to zero
memset(job_queue, 0, total_jobs * sizeof(JobQueue));
// Job queue preparation
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
RowMTInfo *tile_ctxt = &multi_thread_ctxt->row_mt_info[tile_col];
JobQueue *job_queue_curr, *job_queue_temp;
int tile_row = 0;
tile_ctxt->job_queue_hdl.next = (void *)job_queue;
tile_ctxt->job_queue_hdl.num_jobs_acquired = 0;
job_queue_curr = job_queue;
job_queue_temp = job_queue;
// loop over all the vertical rows
for (job_row_num = 0, jobs_per_tile = 0; job_row_num < jobs_per_tile_col;
job_row_num++, jobs_per_tile++) {
job_queue_curr->job_info.vert_unit_row_num = job_row_num;
job_queue_curr->job_info.tile_col_id = tile_col;
job_queue_curr->job_info.tile_row_id = tile_row;
job_queue_curr->next = (void *)(job_queue_temp + 1);
job_queue_curr = ++job_queue_temp;
if (ENCODE_JOB == job_type) {
if (jobs_per_tile >=
multi_thread_ctxt->num_tile_vert_sbs[tile_row] - 1) {
tile_row++;
jobs_per_tile = -1;
}
}
}
// Set the last pointer to NULL
job_queue_curr += -1;
job_queue_curr->next = (void *)NULL;
// Move to the next tile
job_queue += jobs_per_tile_col;
}
for (i = 0; i < cpi->num_workers; i++) {
EncWorkerData *thread_data;
thread_data = &cpi->tile_thr_data[i];
thread_data->thread_id = i;
for (tile_col = 0; tile_col < tile_cols; tile_col++)
thread_data->tile_completion_status[tile_col] = 0;
}
}
int vp9_get_tiles_proc_status(MultiThreadHandle *multi_thread_ctxt,
int *tile_completion_status, int *cur_tile_id,
int tile_cols) {
int tile_col;
int tile_id = -1; // Stores the tile ID with minimum proc done
int max_num_jobs_remaining = 0;
int num_jobs_remaining;
// Mark the completion to avoid check in the loop
tile_completion_status[*cur_tile_id] = 1;
// Check for the status of all the tiles
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
if (tile_completion_status[tile_col] == 0) {
num_jobs_remaining =
vp9_get_job_queue_status(multi_thread_ctxt, tile_col);
// Mark the completion to avoid checks during future switches across tiles
if (num_jobs_remaining == 0) tile_completion_status[tile_col] = 1;
if (num_jobs_remaining > max_num_jobs_remaining) {
max_num_jobs_remaining = num_jobs_remaining;
tile_id = tile_col;
}
}
}
if (-1 == tile_id) {
return 1;
} else {
// Update the cur ID to the next tile ID that will be processed,
// which will be the least processed tile
*cur_tile_id = tile_id;
return 0;
}
}
|