1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
|
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_ext_ratectrl.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_ext_ratectrl.h"
#include "vpx/internal/vpx_codec_internal.h"
// Max rate per frame for 1080P and below encodes if no level requirement given.
// For larger formats limit to MAX_MB_RATE bits per MB
// 4Mbits is derived from the level requirement for level 4 (1080P 30) which
// requires that HW can sustain a rate of 16Mbits over a 4 frame group.
// If a lower level requirement is specified then this may over ride this value.
#define MAX_MB_RATE 250
#define MAXRATE_1080P 4000000
#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
#if CONFIG_VP9_HIGHBITDEPTH
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
switch (bit_depth) { \
case VPX_BITS_8: name = name##_8; break; \
case VPX_BITS_10: name = name##_10; break; \
default: \
assert(bit_depth == VPX_BITS_12); \
name = name##_12; \
break; \
} \
} while (0)
#else
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
do { \
(void)bit_depth; \
name = name##_8; \
} while (0)
#endif
// Tables relating active max Q to active min Q
static int kf_low_motion_minq_8[QINDEX_RANGE];
static int kf_high_motion_minq_8[QINDEX_RANGE];
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
static int inter_minq_8[QINDEX_RANGE];
static int rtc_minq_8[QINDEX_RANGE];
#if CONFIG_VP9_HIGHBITDEPTH
static int kf_low_motion_minq_10[QINDEX_RANGE];
static int kf_high_motion_minq_10[QINDEX_RANGE];
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
static int inter_minq_10[QINDEX_RANGE];
static int rtc_minq_10[QINDEX_RANGE];
static int kf_low_motion_minq_12[QINDEX_RANGE];
static int kf_high_motion_minq_12[QINDEX_RANGE];
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
static int inter_minq_12[QINDEX_RANGE];
static int rtc_minq_12[QINDEX_RANGE];
#endif
#ifdef AGGRESSIVE_VBR
static int gf_high = 2400;
static int gf_low = 400;
static int kf_high = 4000;
static int kf_low = 400;
#else
static int gf_high = 2000;
static int gf_low = 400;
static int kf_high = 4800;
static int kf_low = 300;
#endif
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int get_minq_index(double maxq, double x3, double x2, double x1,
vpx_bit_depth_t bit_depth) {
int i;
const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0) return 0;
for (i = 0; i < QINDEX_RANGE; i++) {
if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
}
return QINDEX_RANGE - 1;
}
static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
int *arfgf_high, int *inter, int *rtc,
vpx_bit_depth_t bit_depth) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
#ifdef AGGRESSIVE_VBR
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
#else
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
#endif
arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
}
}
void vp9_rc_init_minq_luts(void) {
init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
inter_minq_8, rtc_minq_8, VPX_BITS_8);
#if CONFIG_VP9_HIGHBITDEPTH
init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
inter_minq_10, rtc_minq_10, VPX_BITS_10);
init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
inter_minq_12, rtc_minq_12, VPX_BITS_12);
#endif
}
// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
// Convert the index to a real Q value (scaled down to match old Q values)
#if CONFIG_VP9_HIGHBITDEPTH
switch (bit_depth) {
case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
default:
assert(bit_depth == VPX_BITS_12);
return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
}
#else
return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
#endif
}
int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
int i;
for (i = 0; i < QINDEX_RANGE; ++i)
if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
if (i == QINDEX_RANGE) i--;
return i;
}
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor, vpx_bit_depth_t bit_depth) {
const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
assert(correction_factor <= MAX_BPB_FACTOR &&
correction_factor >= MIN_BPB_FACTOR);
// q based adjustment to baseline enumerator
enumerator += (int)(enumerator * q) >> 12;
return (int)(enumerator * correction_factor / q);
}
int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
double correction_factor,
vpx_bit_depth_t bit_depth) {
const int bpm =
(int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
return VPXMAX(FRAME_OVERHEAD_BITS,
(int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS));
}
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const VP9EncoderConfig *oxcf = &cpi->oxcf;
const int min_frame_target =
VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
if (target < min_frame_target) target = min_frame_target;
if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
// If there is an active ARF at this location use the minimum
// bits on this frame even if it is a constructed arf.
// The active maximum quantizer insures that an appropriate
// number of bits will be spent if needed for constructed ARFs.
target = min_frame_target;
}
// Clip the frame target to the maximum allowed value.
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
if (oxcf->rc_max_inter_bitrate_pct) {
const int64_t max_rate =
(int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
// target is of type int and VPXMIN cannot evaluate to larger than target
target = (int)VPXMIN(target, max_rate);
}
return target;
}
int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
const RATE_CONTROL *rc = &cpi->rc;
const VP9EncoderConfig *oxcf = &cpi->oxcf;
if (oxcf->rc_max_intra_bitrate_pct) {
const int64_t max_rate =
(int64_t)rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
target = (int)VPXMIN(target, max_rate);
}
if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
return target;
}
// TODO(marpan/jianj): bits_off_target and buffer_level are used in the same
// way for CBR mode, for the buffering updates below. Look into removing one
// of these (i.e., bits_off_target).
// Update the buffer level before encoding with the per-frame-bandwidth,
void vp9_update_buffer_level_preencode(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
rc->bits_off_target += rc->avg_frame_bandwidth;
// Clip the buffer level to the maximum specified buffer size.
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = rc->bits_off_target;
}
// Update the buffer level before encoding with the per-frame-bandwidth
// for SVC. The current and all upper temporal layers are updated, needed
// for the layered rate control which involves cumulative buffer levels for
// the temporal layers. Allow for using the timestamp(pts) delta for the
// framerate when the set_ref_frame_config is used.
void vp9_update_buffer_level_svc_preencode(VP9_COMP *cpi) {
SVC *const svc = &cpi->svc;
int i;
// Set this to 1 to use timestamp delta for "framerate" under
// ref_frame_config usage.
int use_timestamp = 1;
const int64_t ts_delta =
svc->time_stamp_superframe - svc->time_stamp_prev[svc->spatial_layer_id];
for (i = svc->temporal_layer_id; i < svc->number_temporal_layers; ++i) {
const int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
if (use_timestamp && cpi->svc.use_set_ref_frame_config &&
svc->number_temporal_layers == 1 && ts_delta > 0 &&
svc->current_superframe > 0) {
// TODO(marpan): This may need to be modified for temporal layers.
const double framerate_pts = 10000000.0 / ts_delta;
lrc->bits_off_target += saturate_cast_double_to_int(
round(lc->target_bandwidth / framerate_pts));
} else {
lrc->bits_off_target += saturate_cast_double_to_int(
round(lc->target_bandwidth / lc->framerate));
}
// Clip buffer level to maximum buffer size for the layer.
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = lrc->bits_off_target;
if (i == svc->temporal_layer_id) {
cpi->rc.bits_off_target = lrc->bits_off_target;
cpi->rc.buffer_level = lrc->buffer_level;
}
}
}
// Update the buffer level for higher temporal layers, given the encoded current
// temporal layer.
static void update_layer_buffer_level_postencode(SVC *svc,
int encoded_frame_size) {
int i = 0;
const int current_temporal_layer = svc->temporal_layer_id;
for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
const int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->bits_off_target -= encoded_frame_size;
// Clip buffer level to maximum buffer size for the layer.
lrc->bits_off_target =
VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
lrc->buffer_level = lrc->bits_off_target;
}
}
// Update the buffer level after encoding with encoded frame size.
static void update_buffer_level_postencode(VP9_COMP *cpi,
int encoded_frame_size) {
RATE_CONTROL *const rc = &cpi->rc;
rc->bits_off_target -= encoded_frame_size;
// Clip the buffer level to the maximum specified buffer size.
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
// For screen-content mode, and if frame-dropper is off, don't let buffer
// level go below threshold, given here as -rc->maximum_ buffer_size.
if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->oxcf.drop_frames_water_mark == 0)
rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
rc->buffer_level = rc->bits_off_target;
if (is_one_pass_svc(cpi)) {
update_layer_buffer_level_postencode(&cpi->svc, encoded_frame_size);
}
}
int vp9_rc_get_default_min_gf_interval(int width, int height,
double framerate) {
// Assume we do not need any constraint lower than 4K 20 fps
static const double factor_safe = 3840 * 2160 * 20.0;
const double factor = width * height * framerate;
const int default_interval =
clamp((int)round(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
if (factor <= factor_safe)
return default_interval;
else
return VPXMAX(default_interval,
(int)round(MIN_GF_INTERVAL * factor / factor_safe));
// Note this logic makes:
// 4K24: 5
// 4K30: 6
// 4K60: 12
}
int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
int interval = VPXMIN(MAX_GF_INTERVAL, (int)round(framerate * 0.75));
interval += (interval & 0x01); // Round to even value
return VPXMAX(interval, min_gf_interval);
}
void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
int i;
if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
} else {
rc->avg_frame_qindex[KEY_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
rc->avg_frame_qindex[INTER_FRAME] =
(oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
}
rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
rc->buffer_level = rc->starting_buffer_level;
rc->bits_off_target = rc->starting_buffer_level;
rc->rolling_target_bits = rc->avg_frame_bandwidth;
rc->rolling_actual_bits = rc->avg_frame_bandwidth;
rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
rc->total_actual_bits = 0;
rc->total_target_bits = 0;
rc->total_target_vs_actual = 0;
rc->avg_frame_low_motion = 0;
rc->count_last_scene_change = 0;
rc->af_ratio_onepass_vbr = 10;
rc->prev_avg_source_sad_lag = 0;
rc->high_source_sad = 0;
rc->reset_high_source_sad = 0;
rc->high_source_sad_lagindex = -1;
rc->high_num_blocks_with_motion = 0;
rc->hybrid_intra_scene_change = 0;
rc->re_encode_maxq_scene_change = 0;
rc->alt_ref_gf_group = 0;
rc->last_frame_is_src_altref = 0;
rc->fac_active_worst_inter = 150;
rc->fac_active_worst_gf = 100;
rc->force_qpmin = 0;
for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
rc->frames_to_key = 0;
rc->frames_since_key = 8; // Sensible default for first frame.
rc->this_key_frame_forced = 0;
rc->next_key_frame_forced = 0;
rc->source_alt_ref_pending = 0;
rc->source_alt_ref_active = 0;
rc->frames_till_gf_update_due = 0;
rc->constrain_gf_key_freq_onepass_vbr = 1;
rc->ni_av_qi = oxcf->worst_allowed_q;
rc->ni_tot_qi = 0;
rc->ni_frames = 0;
rc->tot_q = 0.0;
rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
rc->rate_correction_factors[i] = 1.0;
rc->damped_adjustment[i] = 0;
}
rc->min_gf_interval = oxcf->min_gf_interval;
rc->max_gf_interval = oxcf->max_gf_interval;
if (rc->min_gf_interval == 0)
rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, oxcf->init_framerate);
if (rc->max_gf_interval == 0)
rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
oxcf->init_framerate, rc->min_gf_interval);
rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
}
rc->force_max_q = 0;
rc->last_post_encode_dropped_scene_change = 0;
rc->use_post_encode_drop = 0;
rc->ext_use_post_encode_drop = 0;
rc->disable_overshoot_maxq_cbr = 0;
rc->arf_active_best_quality_adjustment_factor = 1.0;
rc->arf_increase_active_best_quality = 0;
rc->preserve_arf_as_gld = 0;
rc->preserve_next_arf_as_gld = 0;
rc->show_arf_as_gld = 0;
}
static int check_buffer_above_thresh(VP9_COMP *cpi, int drop_mark) {
SVC *svc = &cpi->svc;
if (!cpi->use_svc || cpi->svc.framedrop_mode != FULL_SUPERFRAME_DROP) {
RATE_CONTROL *const rc = &cpi->rc;
return (rc->buffer_level > drop_mark);
} else {
int i;
// For SVC in the FULL_SUPERFRAME_DROP): the condition on
// buffer (if its above threshold, so no drop) is checked on current and
// upper spatial layers. If any spatial layer is not above threshold then
// we return 0.
for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
// Exclude check for layer whose bitrate is 0.
if (lc->target_bandwidth > 0) {
const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
lrc->optimal_buffer_level / 100);
if (!(lrc->buffer_level > drop_mark_layer)) return 0;
}
}
return 1;
}
}
static int check_buffer_below_thresh(VP9_COMP *cpi, int drop_mark) {
SVC *svc = &cpi->svc;
if (!cpi->use_svc || cpi->svc.framedrop_mode == LAYER_DROP) {
RATE_CONTROL *const rc = &cpi->rc;
return (rc->buffer_level <= drop_mark);
} else {
int i;
// For SVC in the constrained framedrop mode (svc->framedrop_mode =
// CONSTRAINED_LAYER_DROP or FULL_SUPERFRAME_DROP): the condition on
// buffer (if its below threshold, so drop frame) is checked on current
// and upper spatial layers. For FULL_SUPERFRAME_DROP mode if any
// spatial layer is <= threshold, then we return 1 (drop).
for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
// Exclude check for layer whose bitrate is 0.
if (lc->target_bandwidth > 0) {
const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
lrc->optimal_buffer_level / 100);
if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP) {
if (lrc->buffer_level <= drop_mark_layer) return 1;
} else {
if (!(lrc->buffer_level <= drop_mark_layer)) return 0;
}
}
}
if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP)
return 0;
else
return 1;
}
}
int vp9_test_drop(VP9_COMP *cpi) {
const VP9EncoderConfig *oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
SVC *svc = &cpi->svc;
int drop_frames_water_mark = oxcf->drop_frames_water_mark;
if (cpi->use_svc) {
// If we have dropped max_consec_drop frames, then we don't
// drop this spatial layer, and reset counter to 0.
if (svc->drop_count[svc->spatial_layer_id] == svc->max_consec_drop) {
svc->drop_count[svc->spatial_layer_id] = 0;
return 0;
} else {
drop_frames_water_mark = svc->framedrop_thresh[svc->spatial_layer_id];
}
}
if (!drop_frames_water_mark ||
(svc->spatial_layer_id > 0 &&
svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
return 0;
} else {
if ((rc->buffer_level < 0 && svc->framedrop_mode != FULL_SUPERFRAME_DROP) ||
(check_buffer_below_thresh(cpi, -1) &&
svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
// Always drop if buffer is below 0.
return 1;
} else {
// If buffer is below drop_mark, for now just drop every other frame
// (starting with the next frame) until it increases back over drop_mark.
int drop_mark =
(int)(drop_frames_water_mark * rc->optimal_buffer_level / 100);
if (check_buffer_above_thresh(cpi, drop_mark) &&
(rc->decimation_factor > 0)) {
--rc->decimation_factor;
} else if (check_buffer_below_thresh(cpi, drop_mark) &&
rc->decimation_factor == 0) {
rc->decimation_factor = 1;
}
if (rc->decimation_factor > 0) {
if (rc->decimation_count > 0) {
--rc->decimation_count;
return 1;
} else {
rc->decimation_count = rc->decimation_factor;
return 0;
}
} else {
rc->decimation_count = 0;
return 0;
}
}
}
}
int post_encode_drop_cbr(VP9_COMP *cpi, size_t *size) {
size_t frame_size = *size << 3;
int64_t new_buffer_level =
cpi->rc.buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size;
// For now we drop if new buffer level (given the encoded frame size) goes
// below 0.
if (new_buffer_level < 0) {
*size = 0;
vp9_rc_postencode_update_drop_frame(cpi);
// Update flag to use for next frame.
if (cpi->rc.high_source_sad ||
(cpi->use_svc && cpi->svc.high_source_sad_superframe))
cpi->rc.last_post_encode_dropped_scene_change = 1;
// Force max_q on next fame.
cpi->rc.force_max_q = 1;
cpi->rc.avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
cpi->last_frame_dropped = 1;
cpi->ext_refresh_frame_flags_pending = 0;
if (cpi->use_svc) {
SVC *svc = &cpi->svc;
int sl = 0;
int tl = 0;
svc->last_layer_dropped[svc->spatial_layer_id] = 1;
svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
svc->drop_count[svc->spatial_layer_id]++;
svc->skip_enhancement_layer = 1;
// Postencode drop is only checked on base spatial layer,
// for now if max-q is set on base we force it on all layers.
for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
const int layer =
LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->force_max_q = 1;
lrc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
}
}
}
return 1;
}
cpi->rc.force_max_q = 0;
cpi->rc.last_post_encode_dropped_scene_change = 0;
return 0;
}
int vp9_rc_drop_frame(VP9_COMP *cpi) {
SVC *svc = &cpi->svc;
int svc_prev_layer_dropped = 0;
// In the constrained or full_superframe framedrop mode for svc
// (framedrop_mode != (LAYER_DROP && CONSTRAINED_FROM_ABOVE)),
// if the previous spatial layer was dropped, drop the current spatial layer.
if (cpi->use_svc && svc->spatial_layer_id > 0 &&
svc->drop_spatial_layer[svc->spatial_layer_id - 1])
svc_prev_layer_dropped = 1;
if ((svc_prev_layer_dropped && svc->framedrop_mode != LAYER_DROP &&
svc->framedrop_mode != CONSTRAINED_FROM_ABOVE_DROP) ||
svc->force_drop_constrained_from_above[svc->spatial_layer_id] ||
vp9_test_drop(cpi)) {
vp9_rc_postencode_update_drop_frame(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->last_frame_dropped = 1;
if (cpi->use_svc) {
svc->last_layer_dropped[svc->spatial_layer_id] = 1;
svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
svc->drop_count[svc->spatial_layer_id]++;
svc->skip_enhancement_layer = 1;
if (svc->framedrop_mode == LAYER_DROP ||
(svc->framedrop_mode == CONSTRAINED_FROM_ABOVE_DROP &&
svc->force_drop_constrained_from_above[svc->number_spatial_layers -
1] == 0) ||
svc->drop_spatial_layer[0] == 0) {
// For the case of constrained drop mode where full superframe is
// dropped, we don't increment the svc frame counters.
// In particular temporal layer counter (which is incremented in
// vp9_inc_frame_in_layer()) won't be incremented, so on a dropped
// frame we try the same temporal_layer_id on next incoming frame.
// This is to avoid an issue with temporal alignment with full
// superframe dropping.
vp9_inc_frame_in_layer(cpi);
}
if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
int i;
int all_layers_drop = 1;
for (i = 0; i < svc->spatial_layer_id; i++) {
if (svc->drop_spatial_layer[i] == 0) {
all_layers_drop = 0;
break;
}
}
if (all_layers_drop == 1) svc->skip_enhancement_layer = 0;
}
}
return 1;
}
return 0;
}
static int adjust_q_cbr(const VP9_COMP *cpi, int q) {
// This makes sure q is between oscillating Qs to prevent resonance.
if (!cpi->rc.reset_high_source_sad &&
(!cpi->oxcf.gf_cbr_boost_pct ||
!(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
int qclamp = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
// If the previous frame had overshoot and the current q needs to increase
// above the clamped value, reduce the clamp for faster reaction to
// overshoot.
if (cpi->rc.rc_1_frame == -1 && q > qclamp)
q = (q + qclamp) >> 1;
else
q = qclamp;
}
if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_limit_q(cpi, &q);
return VPXMAX(VPXMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality);
}
static double get_rate_correction_factor(const VP9_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const VP9_COMMON *const cm = &cpi->common;
double rcf;
if (frame_is_intra_only(cm)) {
rcf = rc->rate_correction_factors[KF_STD];
} else if (cpi->oxcf.pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
rcf = rc->rate_correction_factors[rf_lvl];
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
rcf = rc->rate_correction_factors[GF_ARF_STD];
else
rcf = rc->rate_correction_factors[INTER_NORMAL];
}
rcf *= rcf_mult[rc->frame_size_selector];
return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
}
static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
RATE_CONTROL *const rc = &cpi->rc;
const VP9_COMMON *const cm = &cpi->common;
// Normalize RCF to account for the size-dependent scaling factor.
factor /= rcf_mult[cpi->rc.frame_size_selector];
factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
if (frame_is_intra_only(cm)) {
rc->rate_correction_factors[KF_STD] = factor;
} else if (cpi->oxcf.pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
rc->rate_correction_factors[GF_ARF_STD] = factor;
else
rc->rate_correction_factors[INTER_NORMAL] = factor;
}
}
void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
int correction_factor = 100;
double rate_correction_factor = get_rate_correction_factor(cpi);
double adjustment_limit;
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
int projected_size_based_on_q = 0;
// Do not update the rate factors for arf overlay frames.
if (cpi->rc.is_src_frame_alt_ref) return;
// Clear down mmx registers to allow floating point in what follows
vpx_clear_system_state();
// Work out how big we would have expected the frame to be at this Q given
// the current correction factor.
// Stay in double to avoid int overflow when values are large
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
projected_size_based_on_q =
vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
} else {
FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
projected_size_based_on_q =
vp9_estimate_bits_at_q(frame_type, cm->base_qindex, cm->MBs,
rate_correction_factor, cm->bit_depth);
}
// Work out a size correction factor.
if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
projected_size_based_on_q);
// Do not use damped adjustment for the first frame of each frame type
if (!cpi->rc.damped_adjustment[rf_lvl]) {
adjustment_limit = 1.0;
cpi->rc.damped_adjustment[rf_lvl] = 1;
} else {
// More heavily damped adjustment used if we have been oscillating either
// side of target.
adjustment_limit =
0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
}
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
cpi->rc.q_1_frame = cm->base_qindex;
cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
if (correction_factor > 110)
cpi->rc.rc_1_frame = -1;
else if (correction_factor < 90)
cpi->rc.rc_1_frame = 1;
else
cpi->rc.rc_1_frame = 0;
// Turn off oscilation detection in the case of massive overshoot.
if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
correction_factor > 1000) {
cpi->rc.rc_2_frame = 0;
}
if (correction_factor > 102) {
// We are not already at the worst allowable quality
correction_factor =
(int)(100 + ((correction_factor - 100) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
} else if (correction_factor < 99) {
// We are not already at the best allowable quality
correction_factor =
(int)(100 - ((100 - correction_factor) * adjustment_limit));
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
// Keep rate_correction_factor within limits
if (rate_correction_factor < MIN_BPB_FACTOR)
rate_correction_factor = MIN_BPB_FACTOR;
}
set_rate_correction_factor(cpi, rate_correction_factor);
}
int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
int active_best_quality, int active_worst_quality) {
const VP9_COMMON *const cm = &cpi->common;
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
int q = active_worst_quality;
int last_error = INT_MAX;
int i, target_bits_per_mb, bits_per_mb_at_this_q;
const double correction_factor = get_rate_correction_factor(cpi);
// Calculate required scaling factor based on target frame size and size of
// frame produced using previous Q.
target_bits_per_mb =
(int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
i = active_best_quality;
do {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cr->apply_cyclic_refresh &&
(!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
bits_per_mb_at_this_q =
(int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
} else {
FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
frame_type, i, correction_factor, cm->bit_depth);
}
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
q = i;
else
q = i - 1;
break;
} else {
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
}
} while (++i <= active_worst_quality);
// Adjustment to q for CBR mode.
if (cpi->oxcf.rc_mode == VPX_CBR) return adjust_q_cbr(cpi, q);
return q;
}
static int get_active_quality(int q, int gfu_boost, int low, int high,
int *low_motion_minq, int *high_motion_minq) {
if (gfu_boost > high) {
return low_motion_minq[q];
} else if (gfu_boost < low) {
return high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - gfu_boost;
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
return low_motion_minq[q] + adjustment;
}
}
static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
vpx_bit_depth_t bit_depth) {
int *kf_low_motion_minq;
int *kf_high_motion_minq;
ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
kf_low_motion_minq, kf_high_motion_minq);
}
static int get_gf_active_quality(const VP9_COMP *const cpi, int q,
vpx_bit_depth_t bit_depth) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const RATE_CONTROL *const rc = &cpi->rc;
int *arfgf_low_motion_minq;
int *arfgf_high_motion_minq;
const int gfu_boost = cpi->multi_layer_arf
? gf_group->gfu_boost[gf_group->index]
: rc->gfu_boost;
ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
return get_active_quality(q, gfu_boost, gf_low, gf_high,
arfgf_low_motion_minq, arfgf_high_motion_minq);
}
static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const unsigned int curr_frame = cpi->common.current_video_frame;
int active_worst_quality;
if (cpi->common.frame_type == KEY_FRAME) {
active_worst_quality =
curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
} else {
if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
active_worst_quality =
curr_frame == 1
? rc->last_q[KEY_FRAME] * 5 >> 2
: rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
} else {
active_worst_quality = curr_frame == 1
? rc->last_q[KEY_FRAME] << 1
: rc->avg_frame_qindex[INTER_FRAME] *
rc->fac_active_worst_inter / 100;
}
}
return VPXMIN(active_worst_quality, rc->worst_quality);
}
// Adjust active_worst_quality level based on buffer level.
static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
// Adjust active_worst_quality: If buffer is above the optimal/target level,
// bring active_worst_quality down depending on fullness of buffer.
// If buffer is below the optimal level, let the active_worst_quality go from
// ambient Q (at buffer = optimal level) to worst_quality level
// (at buffer = critical level).
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *rc = &cpi->rc;
// Buffer level below which we push active_worst to worst_quality.
int64_t critical_level = rc->optimal_buffer_level >> 3;
int64_t buff_lvl_step = 0;
int adjustment = 0;
int active_worst_quality;
int ambient_qp;
unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
if (frame_is_intra_only(cm) || rc->reset_high_source_sad || rc->force_max_q)
return rc->worst_quality;
// For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
// for the first few frames following key frame. These are both initialized
// to worst_quality and updated with (3/4, 1/4) average in postencode_update.
// So for first few frames following key, the qp of that key frame is weighted
// into the active_worst_quality setting.
ambient_qp = (cm->current_video_frame < num_frames_weight_key)
? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
rc->avg_frame_qindex[KEY_FRAME])
: rc->avg_frame_qindex[INTER_FRAME];
active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 5) >> 2);
// For SVC if the current base spatial layer was key frame, use the QP from
// that base layer for ambient_qp.
if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
cpi->svc.number_temporal_layers);
const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
if (lc->is_key_frame) {
const RATE_CONTROL *lrc = &lc->rc;
ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 9) >> 3);
}
}
if (rc->buffer_level > rc->optimal_buffer_level) {
// Adjust down.
// Maximum limit for down adjustment ~30%; make it lower for screen content.
int max_adjustment_down = active_worst_quality / 3;
if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
max_adjustment_down = active_worst_quality >> 3;
if (max_adjustment_down) {
buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
max_adjustment_down);
if (buff_lvl_step)
adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
buff_lvl_step);
active_worst_quality -= adjustment;
}
} else if (rc->buffer_level > critical_level) {
// Adjust up from ambient Q.
if (critical_level) {
buff_lvl_step = (rc->optimal_buffer_level - critical_level);
if (buff_lvl_step) {
adjustment = (int)((rc->worst_quality - ambient_qp) *
(rc->optimal_buffer_level - rc->buffer_level) /
buff_lvl_step);
}
active_worst_quality = ambient_qp + adjustment;
}
} else {
// Set to worst_quality if buffer is below critical level.
active_worst_quality = rc->worst_quality;
}
return active_worst_quality;
}
static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
int *bottom_index,
int *top_index) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
int q;
int *rtc_minq;
ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
if (frame_is_intra_only(cm)) {
active_best_quality = rc->best_quality;
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (rc->this_key_frame_forced) {
int qindex = rc->last_boosted_qindex;
double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
int delta_qindex = vp9_compute_qdelta(
rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
} else if (cm->current_video_frame > 0) {
// not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
double q_val;
active_best_quality = get_kf_active_quality(
rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
active_best_quality +=
vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
}
} else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
cpi->oxcf.gf_cbr_boost_pct &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
} else {
// Use the lower of active_worst_quality and recent/average Q.
if (cm->current_video_frame > 1) {
if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
} else {
if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
else
active_best_quality = rtc_minq[active_worst_quality];
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
// Special case code to try and match quality with forced key frames
if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
const VP9EncoderConfig *const oxcf) {
static const double cq_adjust_threshold = 0.1;
int active_cq_level = oxcf->cq_level;
if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
const double x = (double)rc->total_actual_bits / rc->total_target_bits;
if (x < cq_adjust_threshold) {
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
}
}
return active_cq_level;
}
#define SMOOTH_PCT_MIN 0.1
#define SMOOTH_PCT_DIV 0.05
static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
const RATE_CONTROL *rc,
const VP9EncoderConfig *const oxcf) {
static const double cq_adjust_threshold = 0.1;
int active_cq_level = oxcf->cq_level;
if (oxcf->rc_mode == VPX_CQ) {
if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
active_cq_level -=
(int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
active_cq_level = VPXMAX(active_cq_level, 0);
}
if (rc->total_target_bits > 0) {
const double x = (double)rc->total_actual_bits / rc->total_target_bits;
if (x < cq_adjust_threshold) {
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
}
}
}
return active_cq_level;
}
static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
int *bottom_index,
int *top_index) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
int active_best_quality;
int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
int q;
int *inter_minq;
ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
if (frame_is_intra_only(cm)) {
if (oxcf->rc_mode == VPX_Q) {
int qindex = cq_level;
double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
int delta_qindex =
vp9_compute_qdelta(rc, qstart, qstart * 0.25, cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
} else if (rc->this_key_frame_forced) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
int qindex = rc->last_boosted_qindex;
double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
int delta_qindex = vp9_compute_qdelta(
rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
} else {
// not first frame of one pass and kf_boost is set
double q_adj_factor = 1.0;
double q_val;
active_best_quality = get_kf_active_quality(
rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
active_best_quality +=
vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
}
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1) {
if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
} else {
q = rc->avg_frame_qindex[KEY_FRAME];
}
// For constrained quality don't allow Q less than the cq level
if (oxcf->rc_mode == VPX_CQ) {
if (q < cq_level) q = cq_level;
active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
// Constrained quality use slightly lower active best.
active_best_quality = active_best_quality * 15 / 16;
} else if (oxcf->rc_mode == VPX_Q) {
int qindex = cq_level;
double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
int delta_qindex;
if (cpi->refresh_alt_ref_frame)
delta_qindex =
vp9_compute_qdelta(rc, qstart, qstart * 0.40, cm->bit_depth);
else
delta_qindex =
vp9_compute_qdelta(rc, qstart, qstart * 0.50, cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
} else {
active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
}
} else {
if (oxcf->rc_mode == VPX_Q) {
int qindex = cq_level;
double qstart = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
0.70, 1.0, 0.85, 1.0 };
int delta_qindex = vp9_compute_qdelta(
rc, qstart,
qstart * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
} else {
// Use the min of the average Q and active_worst_quality as basis for
// active_best.
if (cm->current_video_frame > 1) {
q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
active_best_quality = inter_minq[q];
} else {
active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
}
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
}
// Clip the active best and worst quality values to limits
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
{
int qdelta = 0;
vpx_clear_system_state();
// Limit Q range for the adaptive loop.
if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
!(cm->current_video_frame == 0)) {
qdelta = vp9_compute_qdelta_by_rate(
&cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
qdelta = vp9_compute_qdelta_by_rate(
&cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
}
if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0;
*top_index = active_worst_quality + qdelta;
*top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
}
#endif
if (oxcf->rc_mode == VPX_Q) {
q = active_best_quality;
// Special case code to try and match quality with forced key frames
} else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
q = rc->last_boosted_qindex;
} else {
q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality);
if (q > *top_index) {
// Special case when we are targeting the max allowed rate
if (rc->this_frame_target >= rc->max_frame_bandwidth)
*top_index = q;
else
q = *top_index;
}
}
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1.00, // INTER_NORMAL
1.00, // INTER_HIGH
1.50, // GF_ARF_LOW
1.75, // GF_ARF_STD
2.00, // KF_STD
};
const VP9_COMMON *const cm = &cpi->common;
int qdelta = vp9_compute_qdelta_by_rate(
&cpi->rc, cm->frame_type, q, rate_factor_deltas[rf_level], cm->bit_depth);
return qdelta;
}
#define STATIC_MOTION_THRESH 95
static void pick_kf_q_bound_two_pass(const VP9_COMP *cpi, int *bottom_index,
int *top_index) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
int active_best_quality;
int active_worst_quality = cpi->twopass.active_worst_quality;
if (rc->this_key_frame_forced) {
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
double last_boosted_q;
int delta_qindex;
int qindex;
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
active_best_quality = qindex;
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 1.25, cm->bit_depth);
active_worst_quality =
VPXMIN(qindex + delta_qindex, active_worst_quality);
} else {
qindex = rc->last_boosted_qindex;
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
last_boosted_q * 0.75, cm->bit_depth);
active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
}
} else {
// Not forced keyframe.
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from cpi->active_worst_quality and kf boost.
active_best_quality =
get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
active_best_quality /= 4;
}
// Don't allow the active min to be lossless (q0) unlesss the max q
// already indicates lossless.
active_best_quality =
VPXMIN(active_worst_quality, VPXMAX(1, active_best_quality));
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
active_best_quality +=
vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
}
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
}
static int rc_constant_q(const VP9_COMP *cpi, int *bottom_index, int *top_index,
int gf_group_index) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
const int is_intra_frame = frame_is_intra_only(cm);
const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
int q = cq_level;
int active_best_quality = cq_level;
int active_worst_quality = cq_level;
// Key frame qp decision
if (is_intra_frame && rc->frames_to_key > 1)
pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
// ARF / GF qp decision
if (!is_intra_frame && !rc->is_src_frame_alt_ref &&
cpi->refresh_alt_ref_frame) {
active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
// Modify best quality for second level arfs. For mode VPX_Q this
// becomes the baseline frame q.
if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
const int layer_depth = gf_group->layer_depth[gf_group_index];
// linearly fit the frame q depending on the layer depth index from
// the base layer ARF.
active_best_quality = ((layer_depth - 1) * cq_level +
active_best_quality + layer_depth / 2) /
layer_depth;
}
}
q = active_best_quality;
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
return q;
}
int vp9_rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
int *top_index, int gf_group_index) {
const VP9_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
int active_best_quality;
int active_worst_quality = cpi->twopass.active_worst_quality;
int q;
int *inter_minq;
int arf_active_best_quality_hl;
int *arfgf_high_motion_minq, *arfgf_low_motion_minq;
const int boost_frame =
!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
if (oxcf->rc_mode == VPX_Q)
return rc_constant_q(cpi, bottom_index, top_index, gf_group_index);
if (frame_is_intra_only(cm)) {
pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
} else if (boost_frame) {
// Use the lower of active_worst_quality and recent
// average Q as basis for GF/ARF best Q limit unless last frame was
// a key frame.
if (rc->frames_since_key > 1 &&
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
q = rc->avg_frame_qindex[INTER_FRAME];
} else {
q = active_worst_quality;
}
// For constrained quality don't allow Q less than the cq level
if (oxcf->rc_mode == VPX_CQ) {
if (q < cq_level) q = cq_level;
}
active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
arf_active_best_quality_hl = active_best_quality;
if (rc->arf_increase_active_best_quality == 1) {
ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_high_motion_minq);
arf_active_best_quality_hl = arfgf_high_motion_minq[q];
} else if (rc->arf_increase_active_best_quality == -1) {
ASSIGN_MINQ_TABLE(cm->bit_depth, arfgf_low_motion_minq);
arf_active_best_quality_hl = arfgf_low_motion_minq[q];
}
active_best_quality =
(int)((double)active_best_quality *
rc->arf_active_best_quality_adjustment_factor +
(double)arf_active_best_quality_hl *
(1.0 - rc->arf_active_best_quality_adjustment_factor));
// Modify best quality for second level arfs. For mode VPX_Q this
// becomes the baseline frame q.
if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
const int layer_depth = gf_group->layer_depth[gf_group_index];
// linearly fit the frame q depending on the layer depth index from
// the base layer ARF.
active_best_quality =
((layer_depth - 1) * q + active_best_quality + layer_depth / 2) /
layer_depth;
}
} else {
active_best_quality = inter_minq[active_worst_quality];
// For the constrained quality mode we don't want
// q to fall below the cq level.
if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
active_best_quality = cq_level;
}
}
// Extension to max or min Q if undershoot or overshoot is outside
// the permitted range.
if (frame_is_intra_only(cm) || boost_frame) {
const int layer_depth = gf_group->layer_depth[gf_group_index];
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
active_worst_quality += (cpi->twopass.extend_maxq / 2);
if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
assert(layer_depth > 1);
active_best_quality =
VPXMAX(active_best_quality,
cpi->twopass.last_qindex_of_arf_layer[layer_depth - 1]);
}
} else {
const int max_layer_depth = gf_group->max_layer_depth;
assert(max_layer_depth > 0);
active_best_quality -=
(cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
active_worst_quality += cpi->twopass.extend_maxq;
// For normal frames do not allow an active minq lower than the q used for
// the last boosted frame.
active_best_quality =
VPXMAX(active_best_quality,
cpi->twopass.last_qindex_of_arf_layer[max_layer_depth - 1]);
}
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
vpx_clear_system_state();
// Static forced key frames Q restrictions dealt with elsewhere.
if (!frame_is_intra_only(cm) || !rc->this_key_frame_forced ||
cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH) {
int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group_index],
active_worst_quality);
active_worst_quality =
VPXMAX(active_worst_quality + qdelta, active_best_quality);
}
#endif
// Modify active_best_quality for downscaled normal frames.
if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
int qdelta = vp9_compute_qdelta_by_rate(
rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
active_best_quality =
VPXMAX(active_best_quality + qdelta, rc->best_quality);
}
active_best_quality =
clamp(active_best_quality, rc->best_quality, rc->worst_quality);
active_worst_quality =
clamp(active_worst_quality, active_best_quality, rc->worst_quality);
if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
// If static since last kf use better of last boosted and last kf q.
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
} else {
q = rc->last_boosted_qindex;
}
} else if (frame_is_intra_only(cm) && !rc->this_key_frame_forced) {
q = active_best_quality;
} else {
q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
active_worst_quality);
if (q > active_worst_quality) {
// Special case when we are targeting the max allowed rate.
if (rc->this_frame_target >= rc->max_frame_bandwidth)
active_worst_quality = q;
else
q = active_worst_quality;
}
}
*top_index = active_worst_quality;
*bottom_index = active_best_quality;
assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
*bottom_index >= rc->best_quality);
assert(q <= rc->worst_quality && q >= rc->best_quality);
return q;
}
int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
int *top_index) {
int q;
const int gf_group_index = cpi->twopass.gf_group.index;
if (cpi->oxcf.pass == 0) {
if (cpi->oxcf.rc_mode == VPX_CBR)
q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
else
q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
} else {
q = vp9_rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index,
gf_group_index);
}
if (cpi->sf.use_nonrd_pick_mode) {
if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
if (q < *bottom_index)
*bottom_index = q;
else if (q > *top_index)
*top_index = q;
}
return q;
}
void vp9_configure_buffer_updates(VP9_COMP *cpi, int gf_group_index) {
VP9_COMMON *cm = &cpi->common;
TWO_PASS *const twopass = &cpi->twopass;
cpi->rc.is_src_frame_alt_ref = 0;
cm->show_existing_frame = 0;
cpi->rc.show_arf_as_gld = 0;
switch (twopass->gf_group.update_type[gf_group_index]) {
case KF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
break;
case LF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
break;
case GF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
break;
case OVERLAY_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
if (cpi->rc.preserve_arf_as_gld) {
cpi->rc.show_arf_as_gld = 1;
cpi->refresh_golden_frame = 0;
cm->show_existing_frame = 1;
cm->refresh_frame_context = 0;
}
break;
case MID_OVERLAY_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
break;
case USE_BUF_FRAME:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
cm->show_existing_frame = 1;
cm->refresh_frame_context = 0;
break;
default:
assert(twopass->gf_group.update_type[gf_group_index] == ARF_UPDATE);
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 1;
break;
}
}
void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
int *frame_under_shoot_limit,
int *frame_over_shoot_limit) {
if (cpi->oxcf.rc_mode == VPX_Q) {
*frame_under_shoot_limit = 0;
*frame_over_shoot_limit = INT_MAX;
} else {
// For very small rate targets where the fractional adjustment
// may be tiny make sure there is at least a minimum range.
const int tol_low =
(int)(((int64_t)cpi->sf.recode_tolerance_low * frame_target) / 100);
const int tol_high =
(int)(((int64_t)cpi->sf.recode_tolerance_high * frame_target) / 100);
*frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
*frame_over_shoot_limit =
VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
}
}
void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
const VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
rc->this_frame_target = target;
// Modify frame size target when down-scaling.
if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
rc->frame_size_selector != UNSCALED) {
rc->this_frame_target = (int)(rc->this_frame_target *
rate_thresh_mult[rc->frame_size_selector]);
}
#if CONFIG_RATE_CTRL
if (cpi->oxcf.use_simple_encode_api) {
if (cpi->encode_command.use_external_target_frame_bits) {
rc->this_frame_target = cpi->encode_command.target_frame_bits;
}
}
#endif // CONFIG_RATE_CTRL
// Target rate per SB64 (including partial SB64s.
const int64_t sb64_target_rate =
((int64_t)rc->this_frame_target * 64 * 64) / (cm->width * cm->height);
rc->sb64_target_rate = (int)VPXMIN(sb64_target_rate, INT_MAX);
}
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
RATE_CONTROL *const rc = &cpi->rc;
rc->frames_since_golden = 0;
// Mark the alt ref as done (setting to 0 means no further alt refs pending).
rc->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
rc->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
// Update the Golden frame usage counts.
if (cpi->refresh_golden_frame) {
// this frame refreshes means next frames don't unless specified by user
rc->frames_since_golden = 0;
// If we are not using alt ref in the up and coming group clear the arf
// active flag. In multi arf group case, if the index is not 0 then
// we are overlaying a mid group arf so should not reset the flag.
if (cpi->oxcf.pass == 2) {
if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
rc->source_alt_ref_active = 0;
} else if (!rc->source_alt_ref_pending) {
rc->source_alt_ref_active = 0;
}
// Decrement count down till next gf
if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
} else if (!cpi->refresh_alt_ref_frame) {
// Decrement count down till next gf
if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
rc->frames_since_golden++;
if (rc->show_arf_as_gld) {
rc->frames_since_golden = 0;
// If we are not using alt ref in the up and coming group clear the arf
// active flag. In multi arf group case, if the index is not 0 then
// we are overlaying a mid group arf so should not reset the flag.
if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
rc->source_alt_ref_active = 0;
}
}
}
static void update_altref_usage(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
int sum_ref_frame_usage = 0;
int arf_frame_usage = 0;
int mi_row, mi_col;
if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
!cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame)
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) {
int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] +
cpi->count_lastgolden_frame_usage[sboffset];
arf_frame_usage += cpi->count_arf_frame_usage[sboffset];
}
}
if (sum_ref_frame_usage > 0) {
double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage;
cpi->rc.perc_arf_usage =
0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count;
}
}
void vp9_compute_frame_low_motion(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
int mi_row, mi_col;
MODE_INFO **mi = cm->mi_grid_visible;
RATE_CONTROL *const rc = &cpi->rc;
const int rows = cm->mi_rows, cols = cm->mi_cols;
int cnt_zeromv = 0;
for (mi_row = 0; mi_row < rows; mi_row++) {
for (mi_col = 0; mi_col < cols; mi_col++) {
if (mi[0]->ref_frame[0] == LAST_FRAME &&
abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
cnt_zeromv++;
mi++;
}
mi += 8;
}
cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
// For SVC: set avg_frame_low_motion (only computed on top spatial layer)
// to all lower spatial layers.
if (cpi->use_svc && svc->spatial_layer_id == svc->number_spatial_layers - 1) {
int i;
for (i = 0; i < svc->number_spatial_layers - 1; ++i) {
const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
}
}
}
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
const VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
SVC *const svc = &cpi->svc;
const int qindex = cm->base_qindex;
const GF_GROUP *gf_group = &cpi->twopass.gf_group;
const int gf_group_index = cpi->twopass.gf_group.index;
const int layer_depth = gf_group->layer_depth[gf_group_index];
// Update rate control heuristics
rc->projected_frame_size = (int)(bytes_used << 3);
// Post encode loop adjustment of Q prediction.
vp9_rc_update_rate_correction_factors(cpi);
// Keep a record of last Q and ambient average Q.
if (frame_is_intra_only(cm)) {
rc->last_q[KEY_FRAME] = qindex;
rc->avg_frame_qindex[KEY_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
if (cpi->use_svc) {
int i;
for (i = 0; i < svc->number_temporal_layers; ++i) {
const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
}
}
} else {
if ((cpi->use_svc) ||
(!rc->is_src_frame_alt_ref &&
!(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
rc->last_q[INTER_FRAME] = qindex;
rc->avg_frame_qindex[INTER_FRAME] =
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
rc->ni_frames++;
rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
rc->avg_q = rc->tot_q / rc->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
rc->ni_tot_qi += qindex;
rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
}
}
if (cpi->use_svc) vp9_svc_adjust_avg_frame_qindex(cpi);
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
(!rc->constrained_gf_group &&
(cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
rc->last_boosted_qindex = qindex;
}
if ((qindex < cpi->twopass.last_qindex_of_arf_layer[layer_depth]) ||
(cm->frame_type == KEY_FRAME) ||
(!rc->constrained_gf_group &&
(cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
cpi->twopass.last_qindex_of_arf_layer[layer_depth] = qindex;
}
if (frame_is_intra_only(cm)) rc->last_kf_qindex = qindex;
update_buffer_level_postencode(cpi, rc->projected_frame_size);
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (!frame_is_intra_only(cm)) {
rc->rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
(int64_t)rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
rc->rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
(int64_t)rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
rc->long_rolling_target_bits = (int)ROUND64_POWER_OF_TWO(
(int64_t)rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
rc->long_rolling_actual_bits = (int)ROUND64_POWER_OF_TWO(
(int64_t)rc->long_rolling_actual_bits * 31 + rc->projected_frame_size,
5);
}
// Actual bits spent
rc->total_actual_bits += rc->projected_frame_size;
rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
if (!cpi->use_svc) {
if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
(!frame_is_intra_only(cm)))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
}
// If second (long term) temporal reference is used for SVC,
// update the golden frame counter, only for base temporal layer.
if (cpi->use_svc && svc->use_gf_temporal_ref_current_layer &&
svc->temporal_layer_id == 0) {
int i = 0;
if (cpi->refresh_golden_frame)
rc->frames_since_golden = 0;
else
rc->frames_since_golden++;
// Decrement count down till next gf
if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
// Update the frames_since_golden for all upper temporal layers.
for (i = 1; i < svc->number_temporal_layers; ++i) {
const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lrc->frames_since_golden = rc->frames_since_golden;
}
}
if (frame_is_intra_only(cm)) rc->frames_since_key = 0;
if (cm->show_frame) {
rc->frames_since_key++;
rc->frames_to_key--;
}
// Trigger the resizing of the next frame if it is scaled.
if (oxcf->pass != 0) {
cpi->resize_pending =
rc->next_frame_size_selector != rc->frame_size_selector;
rc->frame_size_selector = rc->next_frame_size_selector;
}
if (oxcf->pass == 0) {
if (!frame_is_intra_only(cm))
if (cpi->sf.use_altref_onepass) update_altref_usage(cpi);
cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref;
}
if (!frame_is_intra_only(cm)) rc->reset_high_source_sad = 0;
rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth;
if (cpi->use_svc && svc->spatial_layer_id < svc->number_spatial_layers - 1)
svc->lower_layer_qindex = cm->base_qindex;
cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
}
void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
cpi->common.current_video_frame++;
cpi->rc.frames_since_key++;
cpi->rc.frames_to_key--;
cpi->rc.rc_2_frame = 0;
cpi->rc.rc_1_frame = 0;
cpi->rc.last_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
cpi->rc.last_q[INTER_FRAME] = cpi->common.base_qindex;
// For SVC on dropped frame when framedrop_mode != LAYER_DROP:
// in this mode the whole superframe may be dropped if only a single layer
// has buffer underflow (below threshold). Since this can then lead to
// increasing buffer levels/overflow for certain layers even though whole
// superframe is dropped, we cap buffer level if its already stable.
if (cpi->use_svc && cpi->svc.framedrop_mode != LAYER_DROP &&
cpi->rc.buffer_level > cpi->rc.optimal_buffer_level) {
cpi->rc.buffer_level = cpi->rc.optimal_buffer_level;
cpi->rc.bits_off_target = cpi->rc.optimal_buffer_level;
}
cpi->deadline_mode_previous_frame = cpi->oxcf.mode;
}
int vp9_calc_pframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
const int af_ratio = rc->af_ratio_onepass_vbr;
int64_t target =
(!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
? ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval *
af_ratio) /
(rc->baseline_gf_interval + af_ratio - 1)
: ((int64_t)rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
(rc->baseline_gf_interval + af_ratio - 1);
// For SVC: refresh flags are used to define the pattern, so we can't
// use that for boosting the target size here.
// TODO(marpan): Consider adding internal boost on TL0 for VBR-SVC.
// For now just use the CBR logic for setting target size.
if (cpi->use_svc) target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
if (target > INT_MAX) target = INT_MAX;
return vp9_rc_clamp_pframe_target_size(cpi, (int)target);
}
int vp9_calc_iframe_target_size_one_pass_vbr(const VP9_COMP *cpi) {
static const int kf_ratio = 25;
const RATE_CONTROL *rc = &cpi->rc;
int target = rc->avg_frame_bandwidth;
if (target > INT_MAX / kf_ratio)
target = INT_MAX;
else
target = rc->avg_frame_bandwidth * kf_ratio;
return vp9_rc_clamp_iframe_target_size(cpi, target);
}
static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
RATE_CONTROL *const rc = &cpi->rc;
rc->constrained_gf_group = 0;
// Reset gf interval to make more equal spacing for frame_constraint.
if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
(frame_constraint > rc->baseline_gf_interval)) {
rc->baseline_gf_interval = frame_constraint >> 1;
if (rc->baseline_gf_interval < 5)
rc->baseline_gf_interval = frame_constraint;
rc->constrained_gf_group = 1;
} else {
// Reset to keep gf_interval <= frame_constraint.
if (rc->baseline_gf_interval > frame_constraint) {
rc->baseline_gf_interval = frame_constraint;
rc->constrained_gf_group = 1;
}
}
}
void vp9_set_gf_update_one_pass_vbr(VP9_COMP *const cpi) {
RATE_CONTROL *const rc = &cpi->rc;
VP9_COMMON *const cm = &cpi->common;
if (rc->frames_till_gf_update_due == 0) {
double rate_err = 1.0;
rc->gfu_boost = DEFAULT_GF_BOOST;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
vp9_cyclic_refresh_set_golden_update(cpi);
} else {
rc->baseline_gf_interval = VPXMIN(
20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
}
rc->af_ratio_onepass_vbr = 10;
if (rc->rolling_target_bits > 0)
rate_err =
(double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
if (cm->current_video_frame > 30) {
if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
rate_err > 3.5) {
rc->baseline_gf_interval =
VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
} else if (rc->avg_frame_low_motion > 0 &&
rc->avg_frame_low_motion < 20) {
// Decrease gf interval for high motion case.
rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
}
// Adjust boost and af_ratio based on avg_frame_low_motion, which
// varies between 0 and 100 (stationary, 100% zero/small motion).
if (rc->avg_frame_low_motion > 0)
rc->gfu_boost =
VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
(rc->avg_frame_low_motion + 100));
else if (rc->avg_frame_low_motion == 0 && rate_err > 1.0)
rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
}
if (rc->constrain_gf_key_freq_onepass_vbr)
adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
cpi->refresh_golden_frame = 1;
rc->source_alt_ref_pending = 0;
rc->alt_ref_gf_group = 0;
if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
rc->source_alt_ref_pending = 1;
rc->alt_ref_gf_group = 1;
}
}
}
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
rc->frames_to_key == 0 ||
(cpi->oxcf.mode != cpi->deadline_mode_previous_frame))) {
cm->frame_type = KEY_FRAME;
rc->this_key_frame_forced =
cm->current_video_frame != 0 && rc->frames_to_key == 0;
rc->frames_to_key = cpi->oxcf.key_freq;
rc->kf_boost = DEFAULT_KF_BOOST;
rc->source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
}
vp9_set_gf_update_one_pass_vbr(cpi);
if (cm->frame_type == KEY_FRAME)
target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
else
target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
vp9_cyclic_refresh_update_parameters(cpi);
}
int vp9_calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
const VP9EncoderConfig *oxcf = &cpi->oxcf;
const RATE_CONTROL *rc = &cpi->rc;
const SVC *const svc = &cpi->svc;
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
int min_frame_target =
VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
int target;
if (oxcf->gf_cbr_boost_pct) {
const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
target = cpi->refresh_golden_frame
? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
af_ratio_pct) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
: (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
} else {
target = rc->avg_frame_bandwidth;
}
if (is_one_pass_svc(cpi)) {
// Note that for layers, avg_frame_bandwidth is the cumulative
// per-frame-bandwidth. For the target size of this frame, use the
// layer average frame size (i.e., non-cumulative per-frame-bw).
int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
target = lc->avg_frame_size;
min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
}
if (diff > 0) {
// Lower the target bandwidth for this frame.
const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
target -= (int)(((int64_t)target * pct_low) / 200);
} else if (diff < 0) {
// Increase the target bandwidth for this frame.
const int pct_high =
(int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
target += (int)(((int64_t)target * pct_high) / 200);
}
if (oxcf->rc_max_inter_bitrate_pct) {
const int max_rate =
rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
target = VPXMIN(target, max_rate);
}
return VPXMAX(min_frame_target, target);
}
int vp9_calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
const RATE_CONTROL *rc = &cpi->rc;
const VP9EncoderConfig *oxcf = &cpi->oxcf;
const SVC *const svc = &cpi->svc;
int64_t target;
if (cpi->common.current_video_frame == 0) {
target = rc->starting_buffer_level / 2;
} else {
int kf_boost = 32;
double framerate = cpi->framerate;
if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
// Use the layer framerate for temporal layers CBR mode.
const int layer =
LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
const LAYER_CONTEXT *lc = &svc->layer_context[layer];
framerate = lc->framerate;
}
kf_boost = VPXMAX(kf_boost, (int)round(2 * framerate - 16));
if (rc->frames_since_key < framerate / 2) {
kf_boost = (int)round(kf_boost * rc->frames_since_key / (framerate / 2));
}
target = ((int64_t)(16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
}
target = VPXMIN(INT_MAX, target);
return vp9_rc_clamp_iframe_target_size(cpi, (int)target);
}
static void set_intra_only_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
// Don't allow intra_only frame for bypass/flexible SVC mode, or if number
// of spatial layers is 1 or if number of spatial or temporal layers > 3.
// Also if intra-only is inserted on very first frame, don't allow if
// if number of temporal layers > 1. This is because on intra-only frame
// only 3 reference buffers can be updated, but for temporal layers > 1
// we generally need to use buffer slots 4 and 5.
if ((cm->current_video_frame == 0 && svc->number_temporal_layers > 1) ||
svc->number_spatial_layers > 3 || svc->number_temporal_layers > 3 ||
svc->number_spatial_layers == 1)
return;
cm->show_frame = 0;
cm->intra_only = 1;
cm->frame_type = INTER_FRAME;
cpi->ext_refresh_frame_flags_pending = 1;
cpi->ext_refresh_last_frame = 1;
cpi->ext_refresh_golden_frame = 1;
cpi->ext_refresh_alt_ref_frame = 1;
if (cm->current_video_frame == 0) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
} else {
int i;
int count = 0;
cpi->lst_fb_idx = -1;
cpi->gld_fb_idx = -1;
cpi->alt_fb_idx = -1;
svc->update_buffer_slot[0] = 0;
// For intra-only frame we need to refresh all slots that were
// being used for the base layer (fb_idx_base[i] == 1).
// Start with assigning last first, then golden and then alt.
for (i = 0; i < REF_FRAMES; ++i) {
if (svc->fb_idx_base[i] == 1) {
svc->update_buffer_slot[0] |= 1 << i;
count++;
}
if (count == 1 && cpi->lst_fb_idx == -1) cpi->lst_fb_idx = i;
if (count == 2 && cpi->gld_fb_idx == -1) cpi->gld_fb_idx = i;
if (count == 3 && cpi->alt_fb_idx == -1) cpi->alt_fb_idx = i;
}
// If golden or alt is not being used for base layer, then set them
// to the lst_fb_idx.
if (cpi->gld_fb_idx == -1) cpi->gld_fb_idx = cpi->lst_fb_idx;
if (cpi->alt_fb_idx == -1) cpi->alt_fb_idx = cpi->lst_fb_idx;
if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
cpi->ext_refresh_last_frame = 0;
cpi->ext_refresh_golden_frame = 0;
cpi->ext_refresh_alt_ref_frame = 0;
cpi->ref_frame_flags = 0;
}
}
}
void vp9_rc_get_svc_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
SVC *const svc = &cpi->svc;
int target = rc->avg_frame_bandwidth;
int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
if (svc->first_spatial_layer_to_encode)
svc->layer_context[svc->temporal_layer_id].is_key_frame = 0;
// Periodic key frames is based on the super-frame counter
// (svc.current_superframe), also only base spatial layer is key frame.
// Key frame is set for any of the following: very first frame, frame flags
// indicates key, superframe counter hits key frequency,(non-intra) sync
// flag is set for spatial layer 0, or deadline mode changes.
if ((cm->current_video_frame == 0 && !svc->previous_frame_is_intra_only) ||
(cpi->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key &&
(svc->current_superframe % cpi->oxcf.key_freq == 0) &&
!svc->previous_frame_is_intra_only && svc->spatial_layer_id == 0) ||
(svc->spatial_layer_sync[0] == 1 && svc->spatial_layer_id == 0) ||
(cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
cm->frame_type = KEY_FRAME;
rc->source_alt_ref_active = 0;
if (is_one_pass_svc(cpi)) {
if (cm->current_video_frame > 0) vp9_svc_reset_temporal_layers(cpi, 1);
layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
svc->number_temporal_layers);
svc->layer_context[layer].is_key_frame = 1;
cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
// Assumption here is that LAST_FRAME is being updated for a keyframe.
// Thus no change in update flags.
if (cpi->oxcf.rc_mode == VPX_CBR)
target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
else
target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
}
} else {
cm->frame_type = INTER_FRAME;
if (is_one_pass_svc(cpi)) {
LAYER_CONTEXT *lc = &svc->layer_context[layer];
// Add condition current_video_frame > 0 for the case where first frame
// is intra only followed by overlay/copy frame. In this case we don't
// want to reset is_key_frame to 0 on overlay/copy frame.
lc->is_key_frame =
(svc->spatial_layer_id == 0 && cm->current_video_frame > 0)
? 0
: svc->layer_context[svc->temporal_layer_id].is_key_frame;
if (cpi->oxcf.rc_mode == VPX_CBR) {
target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
} else {
double rate_err = 0.0;
rc->fac_active_worst_inter = 140;
rc->fac_active_worst_gf = 100;
if (rc->rolling_target_bits > 0) {
rate_err =
(double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
if (rate_err < 1.0)
rc->fac_active_worst_inter = 120;
else if (rate_err > 2.0)
// Increase active_worst faster if rate fluctuation is high.
rc->fac_active_worst_inter = 160;
}
target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
}
}
}
if (svc->simulcast_mode) {
if (svc->spatial_layer_id > 0 &&
svc->layer_context[layer].is_key_frame == 1) {
cm->frame_type = KEY_FRAME;
cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
if (cpi->oxcf.rc_mode == VPX_CBR)
target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
else
target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
}
// Set the buffer idx and refresh flags for key frames in simulcast mode.
// Note the buffer slot for long-term reference is set below (line 2255),
// and alt_ref is used for that on key frame. So use last and golden for
// the other two normal slots.
if (cm->frame_type == KEY_FRAME) {
if (svc->number_spatial_layers == 2) {
if (svc->spatial_layer_id == 0) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 2;
cpi->alt_fb_idx = 6;
} else if (svc->spatial_layer_id == 1) {
cpi->lst_fb_idx = 1;
cpi->gld_fb_idx = 3;
cpi->alt_fb_idx = 6;
}
} else if (svc->number_spatial_layers == 3) {
if (svc->spatial_layer_id == 0) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 3;
cpi->alt_fb_idx = 6;
} else if (svc->spatial_layer_id == 1) {
cpi->lst_fb_idx = 1;
cpi->gld_fb_idx = 4;
cpi->alt_fb_idx = 6;
} else if (svc->spatial_layer_id == 2) {
cpi->lst_fb_idx = 2;
cpi->gld_fb_idx = 5;
cpi->alt_fb_idx = 7;
}
}
cpi->ext_refresh_last_frame = 1;
cpi->ext_refresh_golden_frame = 1;
cpi->ext_refresh_alt_ref_frame = 1;
}
}
// Check if superframe contains a sync layer request.
vp9_svc_check_spatial_layer_sync(cpi);
// If long term termporal feature is enabled, set the period of the update.
// The update/refresh of this reference frame is always on base temporal
// layer frame.
if (svc->use_gf_temporal_ref_current_layer) {
// Only use gf long-term prediction on non-key superframes.
if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
// Use golden for this reference, which will be used for prediction.
int index = svc->spatial_layer_id;
if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
assert(index >= 0);
cpi->gld_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
// Enable prediction off LAST (last reference) and golden (which will
// generally be further behind/long-term reference).
cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
}
// Check for update/refresh of reference: only refresh on base temporal
// layer.
if (svc->temporal_layer_id == 0) {
if (svc->layer_context[svc->temporal_layer_id].is_key_frame) {
// On key frame we update the buffer index used for long term reference.
// Use the alt_ref since it is not used or updated on key frames.
int index = svc->spatial_layer_id;
if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
assert(index >= 0);
cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
cpi->ext_refresh_alt_ref_frame = 1;
} else if (rc->frames_till_gf_update_due == 0) {
// Set perdiod of next update. Make it a multiple of 10, as the cyclic
// refresh is typically ~10%, and we'd like the update to happen after
// a few cylces of the refresh (so it better quality frame). Note the
// cyclic refresh for SVC only operates on base temporal layer frames.
// Choose 20 as perdiod for now (2 cycles).
rc->baseline_gf_interval = 20;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
cpi->ext_refresh_golden_frame = 1;
rc->gfu_boost = DEFAULT_GF_BOOST;
}
}
} else if (!svc->use_gf_temporal_ref) {
rc->frames_till_gf_update_due = INT_MAX;
rc->baseline_gf_interval = INT_MAX;
}
if (svc->set_intra_only_frame) {
set_intra_only_frame(cpi);
if (cpi->oxcf.rc_mode == VPX_CBR)
target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
else
target = vp9_calc_iframe_target_size_one_pass_vbr(cpi);
}
// Overlay frame predicts from LAST (intra-only)
if (svc->previous_frame_is_intra_only) cpi->ref_frame_flags |= VP9_LAST_FLAG;
// Any update/change of global cyclic refresh parameters (amount/delta-qp)
// should be done here, before the frame qp is selected.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_update_parameters(cpi);
vp9_rc_set_frame_target(cpi, target);
if (cm->show_frame) vp9_update_buffer_level_svc_preencode(cpi);
if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && svc->single_layer_svc == 1 &&
svc->spatial_layer_id == svc->first_spatial_layer_to_encode &&
svc->temporal_layer_id == 0) {
LAYER_CONTEXT *lc = NULL;
cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
if (cpi->resize_pending) {
int tl, width, height;
// Apply the same scale to all temporal layers.
for (tl = 0; tl < svc->number_temporal_layers; tl++) {
lc = &svc->layer_context[svc->spatial_layer_id *
svc->number_temporal_layers +
tl];
lc->scaling_factor_num_resize =
cpi->resize_scale_num * lc->scaling_factor_num;
lc->scaling_factor_den_resize =
cpi->resize_scale_den * lc->scaling_factor_den;
// Reset rate control for all temporal layers.
lc->rc.buffer_level = lc->rc.optimal_buffer_level;
lc->rc.bits_off_target = lc->rc.optimal_buffer_level;
lc->rc.rate_correction_factors[INTER_FRAME] =
rc->rate_correction_factors[INTER_FRAME];
}
// Set the size for this current temporal layer.
lc = &svc->layer_context[svc->spatial_layer_id *
svc->number_temporal_layers +
svc->temporal_layer_id];
get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height,
lc->scaling_factor_num_resize,
lc->scaling_factor_den_resize, &width, &height);
vp9_set_size_literal(cpi, width, height);
svc->resize_set = 1;
}
} else {
cpi->resize_pending = 0;
svc->resize_set = 0;
}
}
void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && rc->frames_to_key == 0) ||
(cpi->oxcf.mode != cpi->deadline_mode_previous_frame)) {
cm->frame_type = KEY_FRAME;
rc->frames_to_key = cpi->oxcf.key_freq;
rc->kf_boost = DEFAULT_KF_BOOST;
rc->source_alt_ref_active = 0;
} else {
cm->frame_type = INTER_FRAME;
}
if (rc->frames_till_gf_update_due == 0) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_golden_update(cpi);
else
rc->baseline_gf_interval =
(rc->min_gf_interval + rc->max_gf_interval) / 2;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
if (rc->frames_till_gf_update_due > rc->frames_to_key)
rc->frames_till_gf_update_due = rc->frames_to_key;
cpi->refresh_golden_frame = 1;
rc->gfu_boost = DEFAULT_GF_BOOST;
}
// Any update/change of global cyclic refresh parameters (amount/delta-qp)
// should be done here, before the frame qp is selected.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_update_parameters(cpi);
if (frame_is_intra_only(cm))
target = vp9_calc_iframe_target_size_one_pass_cbr(cpi);
else
target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
vp9_rc_set_frame_target(cpi, target);
if (cm->show_frame) vp9_update_buffer_level_preencode(cpi);
if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
else
cpi->resize_pending = 0;
}
int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
vpx_bit_depth_t bit_depth) {
int start_index = rc->worst_quality;
int target_index = rc->worst_quality;
int i;
// Convert the average q value to an index.
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
start_index = i;
if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
}
// Convert the q target to an index
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
target_index = i;
if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
}
return target_index - start_index;
}
int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
int qindex, double rate_target_ratio,
vpx_bit_depth_t bit_depth) {
int target_index = rc->worst_quality;
int i;
// Look up the current projected bits per block for the base index
const int base_bits_per_mb =
vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
// Find the target bits per mb based on the base value and given ratio.
const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
// Convert the q target to an index
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
target_bits_per_mb) {
target_index = i;
break;
}
}
return target_index - qindex;
}
void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
RATE_CONTROL *const rc) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
// Special case code for 1 pass fixed Q mode tests
if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
rc->max_gf_interval = FIXED_GF_INTERVAL;
rc->min_gf_interval = FIXED_GF_INTERVAL;
rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
} else {
double framerate = cpi->framerate;
// Set Maximum gf/arf interval
rc->max_gf_interval = oxcf->max_gf_interval;
rc->min_gf_interval = oxcf->min_gf_interval;
#if CONFIG_RATE_CTRL
if (oxcf->use_simple_encode_api) {
// In this experiment, we avoid framerate being changed dynamically during
// encoding.
framerate = oxcf->init_framerate;
}
#endif // CONFIG_RATE_CTRL
if (rc->min_gf_interval == 0) {
rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
oxcf->width, oxcf->height, framerate);
}
if (rc->max_gf_interval == 0) {
rc->max_gf_interval =
vp9_rc_get_default_max_gf_interval(framerate, rc->min_gf_interval);
}
// Extended max interval for genuinely static scenes like slide shows.
rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
rc->max_gf_interval = rc->static_scene_max_gf_interval;
// Clamp min to max
rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
if (oxcf->target_level == LEVEL_AUTO) {
const uint32_t pic_size = cpi->common.width * cpi->common.height;
const uint32_t pic_breadth =
VPXMAX(cpi->common.width, cpi->common.height);
int i;
for (i = 0; i < VP9_LEVELS; ++i) {
if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
if (rc->min_gf_interval <=
(int)vp9_level_defs[i].min_altref_distance) {
rc->min_gf_interval = (int)vp9_level_defs[i].min_altref_distance;
rc->max_gf_interval =
VPXMAX(rc->max_gf_interval, rc->min_gf_interval);
}
break;
}
}
}
}
}
void vp9_rc_update_framerate(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
RATE_CONTROL *const rc = &cpi->rc;
rc->avg_frame_bandwidth = saturate_cast_double_to_int(
round(oxcf->target_bandwidth / cpi->framerate));
int64_t vbr_min_bits =
(int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100;
vbr_min_bits = VPXMIN(vbr_min_bits, INT_MAX);
rc->min_frame_bandwidth = VPXMAX((int)vbr_min_bits, FRAME_OVERHEAD_BITS);
// A maximum bitrate for a frame is defined.
// However this limit is extended if a very high rate is given on the command
// line or the rate can not be achieved because of a user specified max q
// (e.g. when the user specifies lossless encode).
//
// If a level is specified that requires a lower maximum rate then the level
// value take precedence.
int64_t vbr_max_bits =
(int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section / 100;
vbr_max_bits = VPXMIN(vbr_max_bits, INT_MAX);
rc->max_frame_bandwidth =
VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), (int)vbr_max_bits);
vp9_rc_set_gf_interval_range(cpi, rc);
}
#define VBR_PCT_ADJUSTMENT_LIMIT 50
// For VBR...adjustment to the frame target based on error from previous frames
static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
RATE_CONTROL *const rc = &cpi->rc;
int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
int64_t frame_target = *this_frame_target;
int frame_window = (int)VPXMIN(
16, cpi->twopass.total_stats.count - cpi->common.current_video_frame);
// Calcluate the adjustment to rate for this frame.
if (frame_window > 0) {
int64_t max_delta = (vbr_bits_off_target > 0)
? (vbr_bits_off_target / frame_window)
: (-vbr_bits_off_target / frame_window);
max_delta =
VPXMIN(max_delta, ((frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
// vbr_bits_off_target > 0 means we have extra bits to spend
if (vbr_bits_off_target > 0) {
frame_target += VPXMIN(vbr_bits_off_target, max_delta);
} else {
frame_target -= VPXMIN(-vbr_bits_off_target, max_delta);
}
}
// Fast redistribution of bits arising from massive local undershoot.
// Don't do it for kf,arf,gf or overlay frames.
if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
rc->vbr_bits_off_target_fast) {
int64_t one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, frame_target);
int64_t fast_extra_bits =
VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
fast_extra_bits =
VPXMIN(fast_extra_bits,
VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
frame_target += fast_extra_bits;
rc->vbr_bits_off_target_fast -= fast_extra_bits;
}
// Clamp the target for the frame to the maximum allowed for one frame.
*this_frame_target = (int)VPXMIN(frame_target, INT_MAX);
}
void vp9_set_target_rate(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int target_rate = rc->base_frame_target;
if (cpi->common.frame_type == KEY_FRAME)
target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
else
target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
if (!cpi->oxcf.vbr_corpus_complexity) {
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
vbr_rate_correction(cpi, &target_rate);
}
vp9_rc_set_frame_target(cpi, target_rate);
}
// Check if we should resize, based on average QP from past x frames.
// Only allow for resize at most one scale down for now, scaling factor is 2.
int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
const VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
RESIZE_ACTION resize_action = NO_RESIZE;
int avg_qp_thr1 = 70;
int avg_qp_thr2 = 50;
// Don't allow for resized frame to go below 320x180, resize in steps of 3/4.
int min_width = (320 * 4) / 3;
int min_height = (180 * 4) / 3;
int down_size_on = 1;
int force_downsize_rate = 0;
cpi->resize_scale_num = 1;
cpi->resize_scale_den = 1;
// Don't resize on key frame; reset the counters on key frame.
if (cm->frame_type == KEY_FRAME) {
cpi->resize_avg_qp = 0;
cpi->resize_count = 0;
return 0;
}
// No resizing down if frame size is below some limit.
if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0;
#if CONFIG_VP9_TEMPORAL_DENOISING
// If denoiser is on, apply a smaller qp threshold.
if (cpi->oxcf.noise_sensitivity > 0) {
avg_qp_thr1 = 60;
avg_qp_thr2 = 40;
}
#endif
// Force downsize based on per-frame-bandwidth, for extreme case,
// for HD input.
if (cpi->resize_state == ORIG && cm->width * cm->height >= 1280 * 720) {
if (rc->avg_frame_bandwidth < 300000 / 30) {
resize_action = DOWN_ONEHALF;
cpi->resize_state = ONE_HALF;
force_downsize_rate = 1;
} else if (rc->avg_frame_bandwidth < 400000 / 30) {
resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
force_downsize_rate = 1;
}
} else if (cpi->resize_state == THREE_QUARTER &&
cm->width * cm->height >= 960 * 540) {
if (rc->avg_frame_bandwidth < 300000 / 30) {
resize_action = DOWN_ONEHALF;
cpi->resize_state = ONE_HALF;
force_downsize_rate = 1;
}
}
// Resize based on average buffer underflow and QP over some window.
// Ignore samples close to key frame, since QP is usually high after key.
if (!force_downsize_rate && cpi->rc.frames_since_key > cpi->framerate) {
const int window = VPXMIN(30, (int)round(2 * cpi->framerate));
cpi->resize_avg_qp += rc->last_q[INTER_FRAME];
if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
++cpi->resize_buffer_underflow;
++cpi->resize_count;
// Check for resize action every "window" frames.
if (cpi->resize_count >= window) {
int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
// Resize down if buffer level has underflowed sufficient amount in past
// window, and we are at original or 3/4 of original resolution.
// Resize back up if average QP is low, and we are currently in a resized
// down state, i.e. 1/2 or 3/4 of original resolution.
// Currently, use a flag to turn 3/4 resizing feature on/off.
if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2) &&
down_size_on) {
if (cpi->resize_state == THREE_QUARTER) {
resize_action = DOWN_ONEHALF;
cpi->resize_state = ONE_HALF;
} else if (cpi->resize_state == ORIG) {
resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
}
} else if (cpi->resize_state != ORIG &&
avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
if (cpi->resize_state == THREE_QUARTER ||
avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
ONEHALFONLY_RESIZE) {
resize_action = UP_ORIG;
cpi->resize_state = ORIG;
} else if (cpi->resize_state == ONE_HALF) {
resize_action = UP_THREEFOUR;
cpi->resize_state = THREE_QUARTER;
}
}
// Reset for next window measurement.
cpi->resize_avg_qp = 0;
cpi->resize_count = 0;
cpi->resize_buffer_underflow = 0;
}
}
// If decision is to resize, reset some quantities, and check is we should
// reduce rate correction factor,
if (resize_action != NO_RESIZE) {
int target_bits_per_frame;
int active_worst_quality;
int qindex;
int tot_scale_change;
if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
cpi->resize_scale_num = 3;
cpi->resize_scale_den = 4;
} else if (resize_action == DOWN_ONEHALF) {
cpi->resize_scale_num = 1;
cpi->resize_scale_den = 2;
} else { // UP_ORIG or anything else
cpi->resize_scale_num = 1;
cpi->resize_scale_den = 1;
}
tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
(cpi->resize_scale_num * cpi->resize_scale_num);
// Reset buffer level to optimal, update target size.
rc->buffer_level = rc->optimal_buffer_level;
rc->bits_off_target = rc->optimal_buffer_level;
rc->this_frame_target = vp9_calc_pframe_target_size_one_pass_cbr(cpi);
// Get the projected qindex, based on the scaled target frame size (scaled
// so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
target_bits_per_frame = (resize_action >= 0)
? rc->this_frame_target * tot_scale_change
: rc->this_frame_target / tot_scale_change;
active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
active_worst_quality);
// If resize is down, check if projected q index is close to worst_quality,
// and if so, reduce the rate correction factor (since likely can afford
// lower q for resized frame).
if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
}
// If resize is back up, check if projected q index is too much above the
// current base_qindex, and if so, reduce the rate correction factor
// (since prefer to keep q for resized frame at least close to previous q).
if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
}
}
return resize_action;
}
static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi,
uint64_t avg_sad_current) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int target;
int found = 0;
int found2 = 0;
int frame;
int i;
uint64_t avg_source_sad_lag = avg_sad_current;
int high_source_sad_lagindex = -1;
int steady_sad_lagindex = -1;
uint32_t sad_thresh1 = 70000;
uint32_t sad_thresh2 = 120000;
int low_content = 0;
int high_content = 0;
double rate_err = 1.0;
// Get measure of complexity over the future frames, and get the first
// future frame with high_source_sad/scene-change.
int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
for (frame = tot_frames; frame >= 1; --frame) {
const int lagframe_idx = tot_frames - frame + 1;
uint64_t reference_sad = rc->avg_source_sad[0];
for (i = 1; i < lagframe_idx; ++i) {
if (rc->avg_source_sad[i] > 0)
reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
}
// Detect up-coming scene change.
if (!found &&
(rc->avg_source_sad[lagframe_idx] >
VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
rc->avg_source_sad[lagframe_idx] >
VPXMAX(3 * sad_thresh1 >> 2,
(unsigned int)(reference_sad << 2)))) {
high_source_sad_lagindex = lagframe_idx;
found = 1;
}
// Detect change from motion to steady.
if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
found2 = 1;
for (i = lagframe_idx; i < tot_frames; ++i) {
if (!(rc->avg_source_sad[i] > 0 &&
rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
rc->avg_source_sad[i] <
(rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
found2 = 0;
i = tot_frames;
}
}
if (found2) steady_sad_lagindex = lagframe_idx;
}
avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
}
if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
// Constrain distance between detected scene cuts.
if (high_source_sad_lagindex != -1 &&
high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
rc->high_source_sad_lagindex = -1;
else
rc->high_source_sad_lagindex = high_source_sad_lagindex;
// Adjust some factors for the next GF group, ignore initial key frame,
// and only for lag_in_frames not too small.
if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
cpi->oxcf.lag_in_frames > 8) {
int frame_constraint;
if (rc->rolling_target_bits > 0)
rate_err =
(double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
high_content = high_source_sad_lagindex != -1 ||
avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
avg_source_sad_lag > sad_thresh2;
low_content = high_source_sad_lagindex == -1 &&
((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
(avg_source_sad_lag < sad_thresh1));
if (low_content) {
rc->gfu_boost = DEFAULT_GF_BOOST;
rc->baseline_gf_interval =
VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
} else if (high_content) {
rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
rc->baseline_gf_interval = (rate_err > 3.0)
? VPXMAX(10, rc->baseline_gf_interval >> 1)
: VPXMAX(6, rc->baseline_gf_interval >> 1);
}
if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
// Check for constraining gf_interval for up-coming scene/content changes,
// or for up-coming key frame, whichever is closer.
frame_constraint = rc->frames_to_key;
if (rc->high_source_sad_lagindex > 0 &&
frame_constraint > rc->high_source_sad_lagindex)
frame_constraint = rc->high_source_sad_lagindex;
if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
frame_constraint = steady_sad_lagindex;
adjust_gfint_frame_constraint(cpi, frame_constraint);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// Adjust factors for active_worst setting & af_ratio for next gf interval.
rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100).
rc->fac_active_worst_gf = 100;
if (rate_err < 2.0 && !high_content) {
rc->fac_active_worst_inter = 120;
rc->fac_active_worst_gf = 90;
} else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
// Increase active_worst faster at low Q if rate fluctuation is high.
rc->fac_active_worst_inter = 200;
if (rc->avg_frame_qindex[INTER_FRAME] < 8)
rc->fac_active_worst_inter = 400;
}
if (low_content && rc->avg_frame_low_motion > 80) {
rc->af_ratio_onepass_vbr = 15;
} else if (high_content || rc->avg_frame_low_motion < 30) {
rc->af_ratio_onepass_vbr = 5;
rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
}
if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
// Flag to disable usage of ARF based on past usage, only allow this
// disabling if current frame/group does not start with key frame or
// scene cut. Note perc_arf_usage is only computed for speed >= 5.
int arf_usage_low =
(cm->frame_type != KEY_FRAME && !rc->high_source_sad &&
cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5);
// Don't use alt-ref for this group under certain conditions.
if (arf_usage_low ||
(rc->high_source_sad_lagindex > 0 &&
rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
(avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
rc->source_alt_ref_pending = 0;
rc->alt_ref_gf_group = 0;
} else {
rc->source_alt_ref_pending = 1;
rc->alt_ref_gf_group = 1;
// If alt-ref is used for this gf group, limit the interval.
if (rc->baseline_gf_interval > 12) {
rc->baseline_gf_interval = 12;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
}
}
}
target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
}
rc->prev_avg_source_sad_lag = avg_source_sad_lag;
}
// Compute average source sad (temporal sad: between current source and
// previous source) over a subset of superblocks. Use this is detect big changes
// in content and allow rate control to react.
// This function also handles special case of lag_in_frames, to measure content
// level in #future frames set by the lag_in_frames.
void vp9_scene_detection_onepass(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
YV12_BUFFER_CONFIG const *unscaled_src = cpi->un_scaled_source;
YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source;
uint8_t *src_y;
int src_ystride;
int src_width;
int src_height;
uint8_t *last_src_y;
int last_src_ystride;
int last_src_width;
int last_src_height;
if (cpi->un_scaled_source == NULL || cpi->unscaled_last_source == NULL ||
(cpi->use_svc && cpi->svc.current_superframe == 0))
return;
src_y = unscaled_src->y_buffer;
src_ystride = unscaled_src->y_stride;
src_width = unscaled_src->y_width;
src_height = unscaled_src->y_height;
last_src_y = unscaled_last_src->y_buffer;
last_src_ystride = unscaled_last_src->y_stride;
last_src_width = unscaled_last_src->y_width;
last_src_height = unscaled_last_src->y_height;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) return;
#endif
rc->high_source_sad = 0;
rc->high_num_blocks_with_motion = 0;
// For SVC: scene detection is only checked on first spatial layer of
// the superframe using the original/unscaled resolutions.
if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
src_width == last_src_width && src_height == last_src_height) {
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
int num_mi_cols = cm->mi_cols;
int num_mi_rows = cm->mi_rows;
int start_frame = 0;
int frames_to_buffer = 1;
int frame = 0;
int scene_cut_force_key_frame = 0;
int num_zero_temp_sad = 0;
uint64_t avg_sad_current = 0;
uint32_t min_thresh = 20000; // ~5 * 64 * 64
float thresh = 8.0f;
uint32_t thresh_key = 140000;
if (cpi->oxcf.speed <= 5) thresh_key = 240000;
if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) min_thresh = 65000;
if (cpi->oxcf.rc_mode == VPX_VBR) thresh = 2.1f;
if (cpi->use_svc && cpi->svc.number_spatial_layers > 1) {
const int aligned_width = ALIGN_POWER_OF_TWO(src_width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(src_height, MI_SIZE_LOG2);
num_mi_cols = aligned_width >> MI_SIZE_LOG2;
num_mi_rows = aligned_height >> MI_SIZE_LOG2;
}
if (cpi->oxcf.lag_in_frames > 0) {
frames_to_buffer = (cm->current_video_frame == 1)
? (int)vp9_lookahead_depth(cpi->lookahead) - 1
: 2;
start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
for (frame = 0; frame < frames_to_buffer; ++frame) {
const int lagframe_idx = start_frame - frame;
if (lagframe_idx >= 0) {
struct lookahead_entry *buf =
vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
frames[frame] = &buf->img;
}
}
// The avg_sad for this current frame is the value of frame#1
// (first future frame) from previous frame.
avg_sad_current = rc->avg_source_sad[1];
if (avg_sad_current >
VPXMAX(min_thresh,
(unsigned int)(rc->avg_source_sad[0] * thresh)) &&
cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
rc->high_source_sad = 1;
else
rc->high_source_sad = 0;
if (rc->high_source_sad && avg_sad_current > thresh_key)
scene_cut_force_key_frame = 1;
// Update recursive average for current frame.
if (avg_sad_current > 0)
rc->avg_source_sad[0] =
(3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
// Shift back data, starting at frame#1.
for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
}
for (frame = 0; frame < frames_to_buffer; ++frame) {
if (cpi->oxcf.lag_in_frames == 0 ||
(frames[frame] != NULL && frames[frame + 1] != NULL &&
frames[frame]->y_width == frames[frame + 1]->y_width &&
frames[frame]->y_height == frames[frame + 1]->y_height)) {
int sbi_row, sbi_col;
const int lagframe_idx =
(cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
const BLOCK_SIZE bsize = BLOCK_64X64;
// Loop over sub-sample of frame, compute average sad over 64x64 blocks.
uint64_t avg_sad = 0;
uint64_t tmp_sad = 0;
int num_samples = 0;
int sb_cols = (num_mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
int sb_rows = (num_mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
if (cpi->oxcf.lag_in_frames > 0) {
src_y = frames[frame]->y_buffer;
src_ystride = frames[frame]->y_stride;
last_src_y = frames[frame + 1]->y_buffer;
last_src_ystride = frames[frame + 1]->y_stride;
}
num_zero_temp_sad = 0;
for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
// Checker-board pattern, ignore boundary.
if (((sbi_row > 0 && sbi_col > 0) &&
(sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
(sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
last_src_ystride);
avg_sad += tmp_sad;
num_samples++;
if (tmp_sad == 0) num_zero_temp_sad++;
}
src_y += 64;
last_src_y += 64;
}
src_y += (src_ystride << 6) - (sb_cols << 6);
last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
}
if (num_samples > 0) avg_sad = avg_sad / num_samples;
// Set high_source_sad flag if we detect very high increase in avg_sad
// between current and previous frame value(s). Use minimum threshold
// for cases where there is small change from content that is completely
// static.
if (lagframe_idx == 0) {
if (avg_sad >
VPXMAX(min_thresh,
(unsigned int)(rc->avg_source_sad[0] * thresh)) &&
rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
num_zero_temp_sad < 3 * (num_samples >> 2))
rc->high_source_sad = 1;
else
rc->high_source_sad = 0;
if (rc->high_source_sad && avg_sad > thresh_key)
scene_cut_force_key_frame = 1;
if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
} else {
rc->avg_source_sad[lagframe_idx] = avg_sad;
}
if (num_zero_temp_sad < (3 * num_samples >> 2))
rc->high_num_blocks_with_motion = 1;
}
}
// For CBR non-screen content mode, check if we should reset the rate
// control. Reset is done if high_source_sad is detected and the rate
// control is at very low QP with rate correction factor at min level.
if (cpi->oxcf.rc_mode == VPX_CBR &&
cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) {
if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality &&
rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) &&
rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) {
rc->rate_correction_factors[INTER_NORMAL] = 0.5;
rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
rc->buffer_level = rc->optimal_buffer_level;
rc->bits_off_target = rc->optimal_buffer_level;
rc->reset_high_source_sad = 1;
}
if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad)
rc->this_frame_target = rc->avg_frame_bandwidth;
}
// For SVC the new (updated) avg_source_sad[0] for the current superframe
// updates the setting for all layers.
if (cpi->use_svc) {
int sl, tl;
SVC *const svc = &cpi->svc;
for (sl = 0; sl < svc->number_spatial_layers; ++sl)
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
lrc->avg_source_sad[0] = rc->avg_source_sad[0];
}
}
// For VBR, under scene change/high content change, force golden refresh.
if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
rc->high_source_sad && rc->frames_to_key > 3 &&
rc->count_last_scene_change > 4 &&
cpi->ext_refresh_frame_flags_pending == 0) {
int target;
cpi->refresh_golden_frame = 1;
if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME;
rc->source_alt_ref_pending = 0;
if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf)
rc->source_alt_ref_pending = 1;
rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
rc->baseline_gf_interval =
VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
target = vp9_calc_pframe_target_size_one_pass_vbr(cpi);
vp9_rc_set_frame_target(cpi, target);
rc->count_last_scene_change = 0;
} else {
rc->count_last_scene_change++;
}
// If lag_in_frame is used, set the gf boost and interval.
if (cpi->oxcf.lag_in_frames > 0)
adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
}
}
// Test if encoded frame will significantly overshoot the target bitrate, and
// if so, set the QP, reset/adjust some rate control parameters, and return 1.
// frame_size = -1 means frame has not been encoded.
int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
SPEED_FEATURES *const sf = &cpi->sf;
int thresh_qp = 7 * (rc->worst_quality >> 3);
int thresh_rate = rc->avg_frame_bandwidth << 3;
// Lower thresh_qp for video (more overshoot at lower Q) to be
// more conservative for video.
if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
thresh_qp = 3 * (rc->worst_quality >> 2);
// If this decision is not based on an encoded frame size but just on
// scene/slide change detection (i.e., re_encode_overshoot_cbr_rt ==
// FAST_DETECTION_MAXQ), for now skip the (frame_size > thresh_rate)
// condition in this case.
// TODO(marpan): Use a better size/rate condition for this case and
// adjust thresholds.
if ((sf->overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ ||
frame_size > thresh_rate) &&
cm->base_qindex < thresh_qp) {
double rate_correction_factor =
cpi->rc.rate_correction_factors[INTER_NORMAL];
const int target_size = cpi->rc.avg_frame_bandwidth;
double new_correction_factor;
int target_bits_per_mb;
double q2;
int enumerator;
// Force a re-encode, and for now use max-QP.
*q = cpi->rc.worst_quality;
cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
cpi->rc.re_encode_maxq_scene_change = 1;
// If the frame_size is much larger than the threshold (big content change)
// and the encoded frame used alot of Intra modes, then force hybrid_intra
// encoding for the re-encode on this scene change. hybrid_intra will
// use rd-based intra mode selection for small blocks.
if (sf->overshoot_detection_cbr_rt == RE_ENCODE_MAXQ &&
frame_size > (thresh_rate << 1) && cpi->svc.spatial_layer_id == 0) {
MODE_INFO **mi = cm->mi_grid_visible;
int sum_intra_usage = 0;
int mi_row, mi_col;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
if (mi[0]->ref_frame[0] == INTRA_FRAME) sum_intra_usage++;
mi++;
}
mi += 8;
}
sum_intra_usage = 100 * sum_intra_usage / (cm->mi_rows * cm->mi_cols);
if (sum_intra_usage > 60) cpi->rc.hybrid_intra_scene_change = 1;
}
// Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
// these parameters will affect QP selection for subsequent frames. If they
// have settled down to a very different (low QP) state, then not adjusting
// them may cause next frame to select low QP and overshoot again.
cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
rc->buffer_level = rc->optimal_buffer_level;
rc->bits_off_target = rc->optimal_buffer_level;
// Reset rate under/over-shoot flags.
cpi->rc.rc_1_frame = 0;
cpi->rc.rc_2_frame = 0;
// Adjust rate correction factor.
target_bits_per_mb =
(int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
// Rate correction factor based on target_bits_per_mb and qp (==max_QP).
// This comes from the inverse computation of vp9_rc_bits_per_mb().
q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
enumerator = 1800000; // Factor for inter frame.
enumerator += (int)(enumerator * q2) >> 12;
new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
if (new_correction_factor > rate_correction_factor) {
rate_correction_factor =
VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
if (rate_correction_factor > MAX_BPB_FACTOR)
rate_correction_factor = MAX_BPB_FACTOR;
cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
}
// For temporal layers, reset the rate control parametes across all
// temporal layers.
// If the first_spatial_layer_to_encode > 0, then this superframe has
// skipped lower base layers. So in this case we should also reset and
// force max-q for spatial layers < first_spatial_layer_to_encode.
// For the case of no inter-layer prediction on delta frames: reset and
// force max-q for all spatial layers, to avoid excessive frame drops.
if (cpi->use_svc) {
int tl = 0;
int sl = 0;
SVC *svc = &cpi->svc;
int num_spatial_layers = VPXMAX(1, svc->first_spatial_layer_to_encode);
if (svc->disable_inter_layer_pred != INTER_LAYER_PRED_ON)
num_spatial_layers = svc->number_spatial_layers;
for (sl = 0; sl < num_spatial_layers; ++sl) {
for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
const int layer =
LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
lrc->avg_frame_qindex[INTER_FRAME] = *q;
lrc->buffer_level = lrc->optimal_buffer_level;
lrc->bits_off_target = lrc->optimal_buffer_level;
lrc->rc_1_frame = 0;
lrc->rc_2_frame = 0;
lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
lrc->force_max_q = 1;
}
}
}
return 1;
} else {
return 0;
}
}
|