1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include <cstdlib>
#include <string>
#include <tuple>
#include "gtest/gtest.h"
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/vpx_dsp_common.h"
using libvpx_test::ACMRandom;
namespace {
const int kNumIterations = 1000;
using HBDBlockErrorFunc = int64_t (*)(const tran_low_t *coeff,
const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz,
int bps);
using BlockErrorParam =
std::tuple<HBDBlockErrorFunc, HBDBlockErrorFunc, vpx_bit_depth_t>;
using BlockErrorFunc = int64_t (*)(const tran_low_t *coeff,
const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz);
template <BlockErrorFunc fn>
int64_t BlockError8BitWrapper(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bps) {
EXPECT_EQ(bps, 8);
return fn(coeff, dqcoeff, block_size, ssz);
}
class BlockErrorTest : public ::testing::TestWithParam<BlockErrorParam> {
public:
~BlockErrorTest() override = default;
void SetUp() override {
error_block_op_ = GET_PARAM(0);
ref_error_block_op_ = GET_PARAM(1);
bit_depth_ = GET_PARAM(2);
}
void TearDown() override { libvpx_test::ClearSystemState(); }
protected:
vpx_bit_depth_t bit_depth_;
HBDBlockErrorFunc error_block_op_;
HBDBlockErrorFunc ref_error_block_op_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(BlockErrorTest);
TEST_P(BlockErrorTest, OperationCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff[4096]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]);
int err_count_total = 0;
int first_failure = -1;
intptr_t block_size;
int64_t ssz;
int64_t ret;
int64_t ref_ssz;
int64_t ref_ret;
const int msb = bit_depth_ + 8 - 1;
for (int i = 0; i < kNumIterations; ++i) {
int err_count = 0;
block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64
for (int j = 0; j < block_size; j++) {
// coeff and dqcoeff will always have at least the same sign, and this
// can be used for optimization, so generate test input precisely.
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << msb);
dqcoeff[j] = rnd(1 << msb);
} else {
// Negative number
coeff[j] = -rnd(1 << msb);
dqcoeff[j] = -rnd(1 << msb);
}
}
ref_ret =
ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_);
ASM_REGISTER_STATE_CHECK(
ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_));
err_count += (ref_ret != ret) | (ref_ssz != ssz);
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Error Block Test, C output doesn't match optimized output. "
<< "First failed at test case " << first_failure;
}
TEST_P(BlockErrorTest, ExtremeValues) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff[4096]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]);
int err_count_total = 0;
int first_failure = -1;
intptr_t block_size;
int64_t ssz;
int64_t ret;
int64_t ref_ssz;
int64_t ref_ret;
const int msb = bit_depth_ + 8 - 1;
int max_val = ((1 << msb) - 1);
for (int i = 0; i < kNumIterations; ++i) {
int err_count = 0;
int k = (i / 9) % 9;
// Change the maximum coeff value, to test different bit boundaries
if (k == 8 && (i % 9) == 0) {
max_val >>= 1;
}
block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64
for (int j = 0; j < block_size; j++) {
if (k < 4) {
// Test at positive maximum values
coeff[j] = k % 2 ? max_val : 0;
dqcoeff[j] = (k >> 1) % 2 ? max_val : 0;
} else if (k < 8) {
// Test at negative maximum values
coeff[j] = k % 2 ? -max_val : 0;
dqcoeff[j] = (k >> 1) % 2 ? -max_val : 0;
} else {
if (rnd(2)) {
// Positive number
coeff[j] = rnd(1 << 14);
dqcoeff[j] = rnd(1 << 14);
} else {
// Negative number
coeff[j] = -rnd(1 << 14);
dqcoeff[j] = -rnd(1 << 14);
}
}
}
ref_ret =
ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_);
ASM_REGISTER_STATE_CHECK(
ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_));
err_count += (ref_ret != ret) | (ref_ssz != ssz);
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Error Block Test, C output doesn't match optimized output. "
<< "First failed at test case " << first_failure;
}
using std::make_tuple;
#if HAVE_SSE2
const BlockErrorParam sse2_block_error_tests[] = {
#if CONFIG_VP9_HIGHBITDEPTH
make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c,
VPX_BITS_10),
make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c,
VPX_BITS_12),
make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c,
VPX_BITS_8),
#endif // CONFIG_VP9_HIGHBITDEPTH
make_tuple(&BlockError8BitWrapper<vp9_block_error_sse2>,
&BlockError8BitWrapper<vp9_block_error_c>, VPX_BITS_8)
};
INSTANTIATE_TEST_SUITE_P(SSE2, BlockErrorTest,
::testing::ValuesIn(sse2_block_error_tests));
#endif // HAVE_SSE2
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, BlockErrorTest,
::testing::Values(make_tuple(&BlockError8BitWrapper<vp9_block_error_avx2>,
&BlockError8BitWrapper<vp9_block_error_c>,
VPX_BITS_8)));
#endif // HAVE_AVX2
#if HAVE_NEON
const BlockErrorParam neon_block_error_tests[] = {
#if CONFIG_VP9_HIGHBITDEPTH
make_tuple(&vp9_highbd_block_error_neon, &vp9_highbd_block_error_c,
VPX_BITS_10),
make_tuple(&vp9_highbd_block_error_neon, &vp9_highbd_block_error_c,
VPX_BITS_12),
make_tuple(&vp9_highbd_block_error_neon, &vp9_highbd_block_error_c,
VPX_BITS_8),
#endif // CONFIG_VP9_HIGHBITDEPTH
make_tuple(&BlockError8BitWrapper<vp9_block_error_neon>,
&BlockError8BitWrapper<vp9_block_error_c>, VPX_BITS_8)
};
INSTANTIATE_TEST_SUITE_P(NEON, BlockErrorTest,
::testing::ValuesIn(neon_block_error_tests));
#endif // HAVE_NEON
#if HAVE_SVE
const BlockErrorParam sve_block_error_tests[] = { make_tuple(
&BlockError8BitWrapper<vp9_block_error_sve>,
&BlockError8BitWrapper<vp9_block_error_c>, VPX_BITS_8) };
INSTANTIATE_TEST_SUITE_P(SVE, BlockErrorTest,
::testing::ValuesIn(sve_block_error_tests));
#endif // HAVE_SVE
} // namespace
|