1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
/*
* Copyright (c) 2021 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/vp8_ratectrl_rtc.h"
#include <math.h>
#include <new>
#include "vp8/common/common.h"
#include "vp8/encoder/onyx_int.h"
#include "vp8/encoder/ratectrl.h"
#include "vpx_ports/system_state.h"
namespace libvpx {
/* Quant MOD */
static const int kQTrans[] = {
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127,
};
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10,
10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16,
16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30
};
static const unsigned char inter_minq[QINDEX_RANGE] = {
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
};
static int rescale(int val, int num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
std::unique_ptr<VP8RateControlRTC> VP8RateControlRTC::Create(
const VP8RateControlRtcConfig &cfg) {
std::unique_ptr<VP8RateControlRTC> rc_api(new (std::nothrow)
VP8RateControlRTC());
if (!rc_api) return nullptr;
rc_api->cpi_ = static_cast<VP8_COMP *>(vpx_memalign(32, sizeof(*cpi_)));
if (!rc_api->cpi_) return nullptr;
vp8_zero(*rc_api->cpi_);
if (!rc_api->InitRateControl(cfg)) return nullptr;
return rc_api;
}
VP8RateControlRTC::~VP8RateControlRTC() {
if (cpi_) {
vpx_free(cpi_->gf_active_flags);
vpx_free(cpi_);
}
}
bool VP8RateControlRTC::InitRateControl(const VP8RateControlRtcConfig &rc_cfg) {
VP8_COMMON *cm = &cpi_->common;
VP8_CONFIG *oxcf = &cpi_->oxcf;
oxcf->end_usage = USAGE_STREAM_FROM_SERVER;
cpi_->pass = 0;
cm->show_frame = 1;
oxcf->drop_frames_water_mark = 0;
cm->current_video_frame = 0;
cpi_->auto_gold = 1;
cpi_->key_frame_count = 1;
cpi_->rate_correction_factor = 1.0;
cpi_->key_frame_rate_correction_factor = 1.0;
cpi_->cyclic_refresh_mode_enabled = 0;
cpi_->auto_worst_q = 1;
cpi_->kf_overspend_bits = 0;
cpi_->kf_bitrate_adjustment = 0;
cpi_->gf_overspend_bits = 0;
cpi_->non_gf_bitrate_adjustment = 0;
if (!UpdateRateControl(rc_cfg)) return false;
cpi_->buffer_level = oxcf->starting_buffer_level;
cpi_->bits_off_target = oxcf->starting_buffer_level;
return true;
}
bool VP8RateControlRTC::UpdateRateControl(
const VP8RateControlRtcConfig &rc_cfg) {
if (rc_cfg.ts_number_layers < 1 ||
rc_cfg.ts_number_layers > VPX_TS_MAX_LAYERS) {
return false;
}
VP8_COMMON *cm = &cpi_->common;
VP8_CONFIG *oxcf = &cpi_->oxcf;
const unsigned int prev_number_of_layers = oxcf->number_of_layers;
vpx_clear_system_state();
cm->Width = rc_cfg.width;
cm->Height = rc_cfg.height;
oxcf->Width = rc_cfg.width;
oxcf->Height = rc_cfg.height;
oxcf->worst_allowed_q = kQTrans[rc_cfg.max_quantizer];
oxcf->best_allowed_q = kQTrans[rc_cfg.min_quantizer];
cpi_->worst_quality = oxcf->worst_allowed_q;
cpi_->best_quality = oxcf->best_allowed_q;
cpi_->output_framerate = rc_cfg.framerate;
oxcf->target_bandwidth =
static_cast<unsigned int>(1000 * rc_cfg.target_bandwidth);
cpi_->ref_framerate = cpi_->output_framerate;
oxcf->fixed_q = -1;
oxcf->error_resilient_mode = 1;
oxcf->starting_buffer_level_in_ms = rc_cfg.buf_initial_sz;
oxcf->optimal_buffer_level_in_ms = rc_cfg.buf_optimal_sz;
oxcf->maximum_buffer_size_in_ms = rc_cfg.buf_sz;
oxcf->starting_buffer_level = rc_cfg.buf_initial_sz;
oxcf->optimal_buffer_level = rc_cfg.buf_optimal_sz;
oxcf->maximum_buffer_size = rc_cfg.buf_sz;
oxcf->number_of_layers = rc_cfg.ts_number_layers;
cpi_->buffered_mode = oxcf->optimal_buffer_level > 0;
oxcf->under_shoot_pct = rc_cfg.undershoot_pct;
oxcf->over_shoot_pct = rc_cfg.overshoot_pct;
oxcf->drop_frames_water_mark = rc_cfg.frame_drop_thresh;
if (oxcf->drop_frames_water_mark > 0) cpi_->drop_frames_allowed = 1;
cpi_->oxcf.rc_max_intra_bitrate_pct = rc_cfg.max_intra_bitrate_pct;
cpi_->framerate = rc_cfg.framerate;
for (int i = 0; i < KEY_FRAME_CONTEXT; ++i) {
cpi_->prior_key_frame_distance[i] =
static_cast<int>(cpi_->output_framerate);
}
oxcf->screen_content_mode = rc_cfg.is_screen;
if (oxcf->number_of_layers > 1 || prev_number_of_layers > 1) {
memcpy(oxcf->target_bitrate, rc_cfg.layer_target_bitrate,
sizeof(rc_cfg.layer_target_bitrate));
memcpy(oxcf->rate_decimator, rc_cfg.ts_rate_decimator,
sizeof(rc_cfg.ts_rate_decimator));
if (cm->current_video_frame == 0) {
double prev_layer_framerate = 0;
for (unsigned int i = 0; i < oxcf->number_of_layers; ++i) {
vp8_init_temporal_layer_context(cpi_, oxcf, i, prev_layer_framerate);
prev_layer_framerate = cpi_->output_framerate / oxcf->rate_decimator[i];
}
} else if (oxcf->number_of_layers != prev_number_of_layers) {
// The number of temporal layers has changed, so reset/initialize the
// temporal layer context for the new layer configuration: this means
// calling vp8_reset_temporal_layer_change() below.
// Start at the base of the pattern cycle, so set the layer id to 0 and
// reset the temporal pattern counter.
// TODO(marpan/jianj): don't think lines 148-151 are needed (user controls
// the layer_id) so remove.
if (cpi_->temporal_layer_id > 0) {
cpi_->temporal_layer_id = 0;
}
cpi_->temporal_pattern_counter = 0;
vp8_reset_temporal_layer_change(cpi_, oxcf,
static_cast<int>(prev_number_of_layers));
}
}
cpi_->total_actual_bits = 0;
cpi_->total_target_vs_actual = 0;
cm->mb_rows = cm->Height >> 4;
cm->mb_cols = cm->Width >> 4;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
// For temporal layers: starting/maximum/optimal_buffer_level is already set
// via vp8_init_temporal_layer_context() or vp8_reset_temporal_layer_change().
if (oxcf->number_of_layers <= 1 && prev_number_of_layers <= 1) {
oxcf->starting_buffer_level =
rescale((int)oxcf->starting_buffer_level, oxcf->target_bandwidth, 1000);
/* Set or reset optimal and maximum buffer levels. */
if (oxcf->optimal_buffer_level == 0) {
oxcf->optimal_buffer_level = oxcf->target_bandwidth / 8;
} else {
oxcf->optimal_buffer_level = rescale((int)oxcf->optimal_buffer_level,
oxcf->target_bandwidth, 1000);
}
if (oxcf->maximum_buffer_size == 0) {
oxcf->maximum_buffer_size = oxcf->target_bandwidth / 8;
} else {
oxcf->maximum_buffer_size =
rescale((int)oxcf->maximum_buffer_size, oxcf->target_bandwidth, 1000);
}
}
if (cpi_->bits_off_target > oxcf->maximum_buffer_size) {
cpi_->bits_off_target = oxcf->maximum_buffer_size;
cpi_->buffer_level = cpi_->bits_off_target;
}
vp8_new_framerate(cpi_, cpi_->framerate);
vpx_clear_system_state();
return true;
}
FrameDropDecision VP8RateControlRTC::ComputeQP(
const VP8FrameParamsQpRTC &frame_params) {
VP8_COMMON *const cm = &cpi_->common;
vpx_clear_system_state();
if (cpi_->oxcf.number_of_layers > 1) {
cpi_->temporal_layer_id = frame_params.temporal_layer_id;
const int layer = frame_params.temporal_layer_id;
vp8_update_layer_contexts(cpi_);
/* Restore layer specific context & set frame rate */
vp8_restore_layer_context(cpi_, layer);
vp8_new_framerate(cpi_, cpi_->layer_context[layer].framerate);
}
cm->frame_type = static_cast<FRAME_TYPE>(frame_params.frame_type);
cm->refresh_golden_frame = (cm->frame_type == KEY_FRAME) ? 1 : 0;
cm->refresh_alt_ref_frame = (cm->frame_type == KEY_FRAME) ? 1 : 0;
if (cm->frame_type == KEY_FRAME && cpi_->common.current_video_frame > 0) {
cpi_->common.frame_flags |= FRAMEFLAGS_KEY;
}
cpi_->per_frame_bandwidth = static_cast<int>(
round(cpi_->oxcf.target_bandwidth / cpi_->output_framerate));
if (vp8_check_drop_buffer(cpi_)) {
if (cpi_->oxcf.number_of_layers > 1) vp8_save_layer_context(cpi_);
return FrameDropDecision::kDrop;
}
if (!vp8_pick_frame_size(cpi_)) {
cm->current_video_frame++;
cpi_->frames_since_key++;
cpi_->ext_refresh_frame_flags_pending = 0;
if (cpi_->oxcf.number_of_layers > 1) vp8_save_layer_context(cpi_);
return FrameDropDecision::kDrop;
}
if (cpi_->buffer_level >= cpi_->oxcf.optimal_buffer_level &&
cpi_->buffered_mode) {
/* Max adjustment is 1/4 */
int Adjustment = cpi_->active_worst_quality / 4;
if (Adjustment) {
int buff_lvl_step;
if (cpi_->buffer_level < cpi_->oxcf.maximum_buffer_size) {
buff_lvl_step = (int)((cpi_->oxcf.maximum_buffer_size -
cpi_->oxcf.optimal_buffer_level) /
Adjustment);
if (buff_lvl_step) {
Adjustment =
(int)((cpi_->buffer_level - cpi_->oxcf.optimal_buffer_level) /
buff_lvl_step);
} else {
Adjustment = 0;
}
}
cpi_->active_worst_quality -= Adjustment;
if (cpi_->active_worst_quality < cpi_->active_best_quality) {
cpi_->active_worst_quality = cpi_->active_best_quality;
}
}
}
if (cpi_->ni_frames > 150) {
int q = cpi_->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
cpi_->active_best_quality = kf_high_motion_minq[q];
} else {
cpi_->active_best_quality = inter_minq[q];
}
if (cpi_->buffer_level >= cpi_->oxcf.maximum_buffer_size) {
cpi_->active_best_quality = cpi_->best_quality;
} else if (cpi_->buffer_level > cpi_->oxcf.optimal_buffer_level) {
int Fraction =
(int)(((cpi_->buffer_level - cpi_->oxcf.optimal_buffer_level) * 128) /
(cpi_->oxcf.maximum_buffer_size -
cpi_->oxcf.optimal_buffer_level));
int min_qadjustment =
((cpi_->active_best_quality - cpi_->best_quality) * Fraction) / 128;
cpi_->active_best_quality -= min_qadjustment;
}
}
/* Clip the active best and worst quality values to limits */
if (cpi_->active_worst_quality > cpi_->worst_quality) {
cpi_->active_worst_quality = cpi_->worst_quality;
}
if (cpi_->active_best_quality < cpi_->best_quality) {
cpi_->active_best_quality = cpi_->best_quality;
}
if (cpi_->active_worst_quality < cpi_->active_best_quality) {
cpi_->active_worst_quality = cpi_->active_best_quality;
}
q_ = vp8_regulate_q(cpi_, cpi_->this_frame_target);
vp8_set_quantizer(cpi_, q_);
vpx_clear_system_state();
return FrameDropDecision::kOk;
}
int VP8RateControlRTC::GetQP() const { return q_; }
UVDeltaQP VP8RateControlRTC::GetUVDeltaQP() const {
VP8_COMMON *cm = &cpi_->common;
UVDeltaQP uv_delta_q;
uv_delta_q.uvdc_delta_q = cm->uvdc_delta_q;
uv_delta_q.uvac_delta_q = cm->uvac_delta_q;
return uv_delta_q;
}
int VP8RateControlRTC::GetLoopfilterLevel() const {
VP8_COMMON *cm = &cpi_->common;
const double qp = q_;
// This model is from linear regression
if (cm->Width * cm->Height <= 320 * 240) {
cm->filter_level = static_cast<int>(0.352685 * qp + 2.957774);
} else if (cm->Width * cm->Height <= 640 * 480) {
cm->filter_level = static_cast<int>(0.485069 * qp - 0.534462);
} else {
cm->filter_level = static_cast<int>(0.314875 * qp + 7.959003);
}
int min_filter_level = 0;
// This logic is from get_min_filter_level() in picklpf.c
if (q_ > 6 && q_ <= 16) {
min_filter_level = 1;
} else {
min_filter_level = (q_ / 8);
}
const int max_filter_level = 63;
if (cm->filter_level < min_filter_level) cm->filter_level = min_filter_level;
if (cm->filter_level > max_filter_level) cm->filter_level = max_filter_level;
return cm->filter_level;
}
void VP8RateControlRTC::PostEncodeUpdate(uint64_t encoded_frame_size) {
VP8_COMMON *const cm = &cpi_->common;
vpx_clear_system_state();
cpi_->total_byte_count += encoded_frame_size;
cpi_->projected_frame_size = static_cast<int>(encoded_frame_size << 3);
if (cpi_->oxcf.number_of_layers > 1) {
for (unsigned int i = cpi_->current_layer + 1;
i < cpi_->oxcf.number_of_layers; ++i) {
cpi_->layer_context[i].total_byte_count += encoded_frame_size;
}
}
vp8_update_rate_correction_factors(cpi_, 2);
cpi_->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME) {
vp8_adjust_key_frame_context(cpi_);
}
/* Keep a record of ambient average Q. */
if (cm->frame_type != KEY_FRAME) {
cpi_->avg_frame_qindex =
(2 + 3 * cpi_->avg_frame_qindex + cm->base_qindex) >> 2;
}
/* Keep a record from which we can calculate the average Q excluding
* key frames.
*/
if (cm->frame_type != KEY_FRAME) {
cpi_->ni_frames++;
/* Damp value for first few frames */
if (cpi_->ni_frames > 150) {
cpi_->ni_tot_qi += q_;
cpi_->ni_av_qi = (cpi_->ni_tot_qi / cpi_->ni_frames);
} else {
cpi_->ni_tot_qi += q_;
cpi_->ni_av_qi =
((cpi_->ni_tot_qi / cpi_->ni_frames) + cpi_->worst_quality + 1) / 2;
}
/* If the average Q is higher than what was used in the last
* frame (after going through the recode loop to keep the frame
* size within range) then use the last frame value - 1. The -1
* is designed to stop Q and hence the data rate, from
* progressively falling away during difficult sections, but at
* the same time reduce the number of itterations around the
* recode loop.
*/
if (q_ > cpi_->ni_av_qi) cpi_->ni_av_qi = q_ - 1;
}
cpi_->bits_off_target +=
cpi_->av_per_frame_bandwidth - cpi_->projected_frame_size;
if (cpi_->bits_off_target > cpi_->oxcf.maximum_buffer_size) {
cpi_->bits_off_target = cpi_->oxcf.maximum_buffer_size;
}
cpi_->total_actual_bits += cpi_->projected_frame_size;
cpi_->buffer_level = cpi_->bits_off_target;
/* Propagate values to higher temporal layers */
if (cpi_->oxcf.number_of_layers > 1) {
for (unsigned int i = cpi_->current_layer + 1;
i < cpi_->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi_->layer_context[i];
int bits_off_for_this_layer = (int)round(
lc->target_bandwidth / lc->framerate - cpi_->projected_frame_size);
lc->bits_off_target += bits_off_for_this_layer;
/* Clip buffer level to maximum buffer size for the layer */
if (lc->bits_off_target > lc->maximum_buffer_size) {
lc->bits_off_target = lc->maximum_buffer_size;
}
lc->total_actual_bits += cpi_->projected_frame_size;
lc->total_target_vs_actual += bits_off_for_this_layer;
lc->buffer_level = lc->bits_off_target;
}
}
cpi_->common.current_video_frame++;
cpi_->frames_since_key++;
if (cpi_->oxcf.number_of_layers > 1) vp8_save_layer_context(cpi_);
vpx_clear_system_state();
}
} // namespace libvpx
|