1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <tuple>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/bench.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_codec.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/msvc.h" // for round()
using libvpx_test::ACMRandom;
namespace {
const int kNumCoeffs = 1024;
const double kPi = 3.141592653589793238462643383279502884;
void reference_32x32_dct_1d(const double in[32], double out[32]) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 32; k++) {
out[k] = 0.0;
for (int n = 0; n < 32; n++) {
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
}
if (k == 0) out[k] = out[k] * kInvSqrt2;
}
}
void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i];
reference_32x32_dct_1d(temp_in, temp_out);
for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
reference_32x32_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4;
}
}
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tuple<FwdTxfmFunc, InvTxfmFunc, int, vpx_bit_depth_t>
Trans32x32Param;
#if CONFIG_VP9_HIGHBITDEPTH
void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 10);
}
void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) {
vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 12);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
class Trans32x32Test : public AbstractBench,
public ::testing::TestWithParam<Trans32x32Param> {
public:
virtual ~Trans32x32Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
version_ = GET_PARAM(2); // 0: high precision forward transform
// 1: low precision version for rd loop
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
int version_;
vpx_bit_depth_t bit_depth_;
int mask_;
FwdTxfmFunc fwd_txfm_;
InvTxfmFunc inv_txfm_;
int16_t *bench_in_;
tran_low_t *bench_out_;
virtual void Run();
};
void Trans32x32Test::Run() { fwd_txfm_(bench_in_, bench_out_, 32); }
TEST_P(Trans32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
inv_txfm_(test_temp_block, CAST_TO_BYTEPTR(dst16), 32));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const int32_t diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
if (version_ == 1) {
max_error /= 2;
total_error /= 45;
}
EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
<< "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
<< "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
}
TEST_P(Trans32x32Test, CoeffCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
}
const int stride = 32;
vpx_fdct32x32_c(input_block, output_ref_block, stride);
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
if (version_ == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
}
}
TEST_P(Trans32x32Test, MemCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 2000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
}
const int stride = 32;
vpx_fdct32x32_c(input_extreme_block, output_ref_block, stride);
ASM_REGISTER_STATE_CHECK(
fwd_txfm_(input_extreme_block, output_block, stride));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
if (version_ == 0) {
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j]))
<< "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than "
<< "4*DCT_MAX_VALUE";
}
}
}
TEST_P(Trans32x32Test, DISABLED_Speed) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
bench_in_ = input_extreme_block;
bench_out_ = output_block;
RunNTimes(INT16_MAX);
PrintMedian("32x32");
}
TEST_P(Trans32x32Test, InverseAccuracy) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255]
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == VPX_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
#if CONFIG_VP9_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
#endif
}
}
reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j) {
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
}
if (bit_depth_ == VPX_BITS_8) {
ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
#if CONFIG_VP9_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CAST_TO_BYTEPTR(dst16), 32));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_VP9_HIGHBITDEPTH
const int diff =
bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error
<< " at index " << j;
}
}
}
using std::make_tuple;
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_SUITE_P(
C, Trans32x32Test,
::testing::Values(
make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_10, 0, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_10, 1, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_12, 0, VPX_BITS_12),
make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_12, 1, VPX_BITS_12),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, 1,
VPX_BITS_8)));
#else
INSTANTIATE_TEST_SUITE_P(
C, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0,
VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c,
1, VPX_BITS_8)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#if HAVE_NEON && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
NEON, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_neon,
&vpx_idct32x32_1024_add_neon, 0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_neon,
&vpx_idct32x32_1024_add_neon, 1, VPX_BITS_8)));
#endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
SSE2, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_sse2,
&vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_sse2,
&vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
SSE2, Trans32x32Test,
::testing::Values(
make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_10, 0, VPX_BITS_10),
make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1,
VPX_BITS_10),
make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_12, 0, VPX_BITS_12),
make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1,
VPX_BITS_12),
make_tuple(&vpx_fdct32x32_sse2, &vpx_idct32x32_1024_add_c, 0,
VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_sse2, &vpx_idct32x32_1024_add_c, 1,
VPX_BITS_8)));
#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
AVX2, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_avx2,
&vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_avx2,
&vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8)));
#endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
MSA, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_msa,
&vpx_idct32x32_1024_add_msa, 0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_msa,
&vpx_idct32x32_1024_add_msa, 1, VPX_BITS_8)));
#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_SUITE_P(
VSX, Trans32x32Test,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_vsx,
0, VPX_BITS_8),
make_tuple(&vpx_fdct32x32_rd_vsx,
&vpx_idct32x32_1024_add_vsx, 1, VPX_BITS_8)));
#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace
|