1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_ports/vpx_timer.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
namespace {
using ::libvpx_test::ACMRandom;
typedef void (*HadamardFunc)(const int16_t *a, ptrdiff_t a_stride,
tran_low_t *b);
void hadamard_loop(const tran_low_t *a, tran_low_t *out) {
tran_low_t b[8];
for (int i = 0; i < 8; i += 2) {
b[i + 0] = a[i * 8] + a[(i + 1) * 8];
b[i + 1] = a[i * 8] - a[(i + 1) * 8];
}
tran_low_t c[8];
for (int i = 0; i < 8; i += 4) {
c[i + 0] = b[i + 0] + b[i + 2];
c[i + 1] = b[i + 1] + b[i + 3];
c[i + 2] = b[i + 0] - b[i + 2];
c[i + 3] = b[i + 1] - b[i + 3];
}
out[0] = c[0] + c[4];
out[7] = c[1] + c[5];
out[3] = c[2] + c[6];
out[4] = c[3] + c[7];
out[2] = c[0] - c[4];
out[6] = c[1] - c[5];
out[1] = c[2] - c[6];
out[5] = c[3] - c[7];
}
void reference_hadamard8x8(const int16_t *a, int a_stride, tran_low_t *b) {
tran_low_t input[64];
tran_low_t buf[64];
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 8; ++j) {
input[i * 8 + j] = static_cast<tran_low_t>(a[i * a_stride + j]);
}
}
for (int i = 0; i < 8; ++i) hadamard_loop(input + i, buf + i * 8);
for (int i = 0; i < 8; ++i) hadamard_loop(buf + i, b + i * 8);
}
void reference_hadamard16x16(const int16_t *a, int a_stride, tran_low_t *b) {
/* The source is a 16x16 block. The destination is rearranged to 8x32.
* Input is 9 bit. */
reference_hadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0);
reference_hadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64);
reference_hadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128);
reference_hadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192);
/* Overlay the 8x8 blocks and combine. */
for (int i = 0; i < 64; ++i) {
/* 8x8 steps the range up to 15 bits. */
const tran_low_t a0 = b[0];
const tran_low_t a1 = b[64];
const tran_low_t a2 = b[128];
const tran_low_t a3 = b[192];
/* Prevent the result from escaping int16_t. */
const tran_low_t b0 = (a0 + a1) >> 1;
const tran_low_t b1 = (a0 - a1) >> 1;
const tran_low_t b2 = (a2 + a3) >> 1;
const tran_low_t b3 = (a2 - a3) >> 1;
/* Store a 16 bit value. */
b[0] = b0 + b2;
b[64] = b1 + b3;
b[128] = b0 - b2;
b[192] = b1 - b3;
++b;
}
}
void reference_hadamard32x32(const int16_t *a, int a_stride, tran_low_t *b) {
reference_hadamard16x16(a + 0 + 0 * a_stride, a_stride, b + 0);
reference_hadamard16x16(a + 16 + 0 * a_stride, a_stride, b + 256);
reference_hadamard16x16(a + 0 + 16 * a_stride, a_stride, b + 512);
reference_hadamard16x16(a + 16 + 16 * a_stride, a_stride, b + 768);
for (int i = 0; i < 256; ++i) {
const tran_low_t a0 = b[0];
const tran_low_t a1 = b[256];
const tran_low_t a2 = b[512];
const tran_low_t a3 = b[768];
const tran_low_t b0 = (a0 + a1) >> 2;
const tran_low_t b1 = (a0 - a1) >> 2;
const tran_low_t b2 = (a2 + a3) >> 2;
const tran_low_t b3 = (a2 - a3) >> 2;
b[0] = b0 + b2;
b[256] = b1 + b3;
b[512] = b0 - b2;
b[768] = b1 - b3;
++b;
}
}
struct HadamardFuncWithSize {
HadamardFuncWithSize(HadamardFunc f, int s) : func(f), block_size(s) {}
HadamardFunc func;
int block_size;
};
std::ostream &operator<<(std::ostream &os, const HadamardFuncWithSize &hfs) {
return os << "block size: " << hfs.block_size;
}
class HadamardTestBase : public ::testing::TestWithParam<HadamardFuncWithSize> {
public:
virtual void SetUp() {
h_func_ = GetParam().func;
bwh_ = GetParam().block_size;
block_size_ = bwh_ * bwh_;
rnd_.Reset(ACMRandom::DeterministicSeed());
}
virtual int16_t Rand() = 0;
void ReferenceHadamard(const int16_t *a, int a_stride, tran_low_t *b,
int bwh) {
if (bwh == 32)
reference_hadamard32x32(a, a_stride, b);
else if (bwh == 16)
reference_hadamard16x16(a, a_stride, b);
else
reference_hadamard8x8(a, a_stride, b);
}
void CompareReferenceRandom() {
const int kMaxBlockSize = 32 * 32;
DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize]);
DECLARE_ALIGNED(16, tran_low_t, b[kMaxBlockSize]);
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
tran_low_t b_ref[kMaxBlockSize];
memset(b_ref, 0, sizeof(b_ref));
for (int i = 0; i < block_size_; ++i) a[i] = Rand();
ReferenceHadamard(a, bwh_, b_ref, bwh_);
ASM_REGISTER_STATE_CHECK(h_func_(a, bwh_, b));
// The order of the output is not important. Sort before checking.
std::sort(b, b + block_size_);
std::sort(b_ref, b_ref + block_size_);
EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
}
void VaryStride() {
const int kMaxBlockSize = 32 * 32;
DECLARE_ALIGNED(16, int16_t, a[kMaxBlockSize * 8]);
DECLARE_ALIGNED(16, tran_low_t, b[kMaxBlockSize]);
memset(a, 0, sizeof(a));
for (int i = 0; i < block_size_ * 8; ++i) a[i] = Rand();
tran_low_t b_ref[kMaxBlockSize];
for (int i = 8; i < 64; i += 8) {
memset(b, 0, sizeof(b));
memset(b_ref, 0, sizeof(b_ref));
ReferenceHadamard(a, i, b_ref, bwh_);
ASM_REGISTER_STATE_CHECK(h_func_(a, i, b));
// The order of the output is not important. Sort before checking.
std::sort(b, b + block_size_);
std::sort(b_ref, b_ref + block_size_);
EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b)));
}
}
void SpeedTest(int times) {
const int kMaxBlockSize = 32 * 32;
DECLARE_ALIGNED(16, int16_t, input[kMaxBlockSize]);
DECLARE_ALIGNED(16, tran_low_t, output[kMaxBlockSize]);
memset(input, 1, sizeof(input));
memset(output, 0, sizeof(output));
vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
for (int i = 0; i < times; ++i) {
h_func_(input, bwh_, output);
}
vpx_usec_timer_mark(&timer);
const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer));
printf("Hadamard%dx%d[%12d runs]: %d us\n", bwh_, bwh_, times,
elapsed_time);
}
protected:
int bwh_;
int block_size_;
HadamardFunc h_func_;
ACMRandom rnd_;
};
class HadamardLowbdTest : public HadamardTestBase {
protected:
virtual int16_t Rand() { return rnd_.Rand9Signed(); }
};
TEST_P(HadamardLowbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
TEST_P(HadamardLowbdTest, VaryStride) { VaryStride(); }
TEST_P(HadamardLowbdTest, DISABLED_Speed) {
SpeedTest(10);
SpeedTest(10000);
SpeedTest(10000000);
}
INSTANTIATE_TEST_SUITE_P(
C, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_c, 8),
HadamardFuncWithSize(&vpx_hadamard_16x16_c, 16),
HadamardFuncWithSize(&vpx_hadamard_32x32_c, 32)));
#if HAVE_SSE2
INSTANTIATE_TEST_SUITE_P(
SSE2, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_sse2, 8),
HadamardFuncWithSize(&vpx_hadamard_16x16_sse2, 16),
HadamardFuncWithSize(&vpx_hadamard_32x32_sse2, 32)));
#endif // HAVE_SSE2
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_16x16_avx2, 16),
HadamardFuncWithSize(&vpx_hadamard_32x32_avx2, 32)));
#endif // HAVE_AVX2
#if HAVE_SSSE3 && VPX_ARCH_X86_64
INSTANTIATE_TEST_SUITE_P(
SSSE3, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_ssse3, 8)));
#endif // HAVE_SSSE3 && VPX_ARCH_X86_64
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(
NEON, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_neon, 8),
HadamardFuncWithSize(&vpx_hadamard_16x16_neon, 16)));
#endif // HAVE_NEON
// TODO(jingning): Remove highbitdepth flag when the SIMD functions are
// in place and turn on the unit test.
#if !CONFIG_VP9_HIGHBITDEPTH
#if HAVE_MSA
INSTANTIATE_TEST_SUITE_P(
MSA, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_msa, 8),
HadamardFuncWithSize(&vpx_hadamard_16x16_msa, 16)));
#endif // HAVE_MSA
#endif // !CONFIG_VP9_HIGHBITDEPTH
#if HAVE_VSX
INSTANTIATE_TEST_SUITE_P(
VSX, HadamardLowbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_hadamard_8x8_vsx, 8),
HadamardFuncWithSize(&vpx_hadamard_16x16_vsx, 16)));
#endif // HAVE_VSX
#if CONFIG_VP9_HIGHBITDEPTH
class HadamardHighbdTest : public HadamardTestBase {
protected:
virtual int16_t Rand() { return rnd_.Rand13Signed(); }
};
TEST_P(HadamardHighbdTest, CompareReferenceRandom) { CompareReferenceRandom(); }
TEST_P(HadamardHighbdTest, VaryStride) { VaryStride(); }
TEST_P(HadamardHighbdTest, DISABLED_Speed) {
SpeedTest(10);
SpeedTest(10000);
SpeedTest(10000000);
}
INSTANTIATE_TEST_SUITE_P(
C, HadamardHighbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_highbd_hadamard_8x8_c, 8),
HadamardFuncWithSize(&vpx_highbd_hadamard_16x16_c, 16),
HadamardFuncWithSize(&vpx_highbd_hadamard_32x32_c, 32)));
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, HadamardHighbdTest,
::testing::Values(HadamardFuncWithSize(&vpx_highbd_hadamard_8x8_avx2, 8),
HadamardFuncWithSize(&vpx_highbd_hadamard_16x16_avx2, 16),
HadamardFuncWithSize(&vpx_highbd_hadamard_32x32_avx2,
32)));
#endif // HAVE_AVX2
#endif // CONFIG_VP9_HIGHBITDEPTH
} // namespace
|