1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
// Copyright 2022 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Gamma correction utilities.
#include "sharpyuv/sharpyuv_gamma.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include "src/webp/types.h"
// Gamma correction compensates loss of resolution during chroma subsampling.
// Size of pre-computed table for converting from gamma to linear.
#define GAMMA_TO_LINEAR_TAB_BITS 10
#define GAMMA_TO_LINEAR_TAB_SIZE (1 << GAMMA_TO_LINEAR_TAB_BITS)
static uint32_t kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 2];
#define LINEAR_TO_GAMMA_TAB_BITS 9
#define LINEAR_TO_GAMMA_TAB_SIZE (1 << LINEAR_TO_GAMMA_TAB_BITS)
static uint32_t kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 2];
static const double kGammaF = 1. / 0.45;
#define GAMMA_TO_LINEAR_BITS 16
static volatile int kGammaTablesSOk = 0;
void SharpYuvInitGammaTables(void) {
assert(GAMMA_TO_LINEAR_BITS <= 16);
if (!kGammaTablesSOk) {
int v;
const double a = 0.09929682680944;
const double thresh = 0.018053968510807;
const double final_scale = 1 << GAMMA_TO_LINEAR_BITS;
// Precompute gamma to linear table.
{
const double norm = 1. / GAMMA_TO_LINEAR_TAB_SIZE;
const double a_rec = 1. / (1. + a);
for (v = 0; v <= GAMMA_TO_LINEAR_TAB_SIZE; ++v) {
const double g = norm * v;
double value;
if (g <= thresh * 4.5) {
value = g / 4.5;
} else {
value = pow(a_rec * (g + a), kGammaF);
}
kGammaToLinearTabS[v] = (uint32_t)(value * final_scale + .5);
}
// to prevent small rounding errors to cause read-overflow:
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE + 1] =
kGammaToLinearTabS[GAMMA_TO_LINEAR_TAB_SIZE];
}
// Precompute linear to gamma table.
{
const double scale = 1. / LINEAR_TO_GAMMA_TAB_SIZE;
for (v = 0; v <= LINEAR_TO_GAMMA_TAB_SIZE; ++v) {
const double g = scale * v;
double value;
if (g <= thresh) {
value = 4.5 * g;
} else {
value = (1. + a) * pow(g, 1. / kGammaF) - a;
}
kLinearToGammaTabS[v] =
(uint32_t)(final_scale * value + 0.5);
}
// to prevent small rounding errors to cause read-overflow:
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE + 1] =
kLinearToGammaTabS[LINEAR_TO_GAMMA_TAB_SIZE];
}
kGammaTablesSOk = 1;
}
}
static WEBP_INLINE int Shift(int v, int shift) {
return (shift >= 0) ? (v << shift) : (v >> -shift);
}
static WEBP_INLINE uint32_t FixedPointInterpolation(int v, uint32_t* tab,
int tab_pos_shift_right,
int tab_value_shift) {
const uint32_t tab_pos = Shift(v, -tab_pos_shift_right);
// fractional part, in 'tab_pos_shift' fixed-point precision
const uint32_t x = v - (tab_pos << tab_pos_shift_right); // fractional part
// v0 / v1 are in kGammaToLinearBits fixed-point precision (range [0..1])
const uint32_t v0 = Shift(tab[tab_pos + 0], tab_value_shift);
const uint32_t v1 = Shift(tab[tab_pos + 1], tab_value_shift);
// Final interpolation.
const uint32_t v2 = (v1 - v0) * x; // note: v1 >= v0.
const int half =
(tab_pos_shift_right > 0) ? 1 << (tab_pos_shift_right - 1) : 0;
const uint32_t result = v0 + ((v2 + half) >> tab_pos_shift_right);
return result;
}
static uint32_t ToLinearSrgb(uint16_t v, int bit_depth) {
const int shift = GAMMA_TO_LINEAR_TAB_BITS - bit_depth;
if (shift > 0) {
return kGammaToLinearTabS[v << shift];
}
return FixedPointInterpolation(v, kGammaToLinearTabS, -shift, 0);
}
static uint16_t FromLinearSrgb(uint32_t value, int bit_depth) {
return FixedPointInterpolation(
value, kLinearToGammaTabS,
(GAMMA_TO_LINEAR_BITS - LINEAR_TO_GAMMA_TAB_BITS),
bit_depth - GAMMA_TO_LINEAR_BITS);
}
////////////////////////////////////////////////////////////////////////////////
#define CLAMP(x, low, high) \
(((x) < (low)) ? (low) : (((high) < (x)) ? (high) : (x)))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
static WEBP_INLINE float Roundf(float x) {
if (x < 0)
return (float)ceil((double)(x - 0.5f));
else
return (float)floor((double)(x + 0.5f));
}
static WEBP_INLINE float Powf(float base, float exp) {
return (float)pow((double)base, (double)exp);
}
static WEBP_INLINE float Log10f(float x) { return (float)log10((double)x); }
static float ToLinear709(float gamma) {
if (gamma < 0.f) {
return 0.f;
} else if (gamma < 4.5f * 0.018053968510807f) {
return gamma / 4.5f;
} else if (gamma < 1.f) {
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
}
return 1.f;
}
static float FromLinear709(float linear) {
if (linear < 0.f) {
return 0.f;
} else if (linear < 0.018053968510807f) {
return linear * 4.5f;
} else if (linear < 1.f) {
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
}
return 1.f;
}
static float ToLinear470M(float gamma) {
return Powf(CLAMP(gamma, 0.f, 1.f), 2.2f);
}
static float FromLinear470M(float linear) {
return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.2f);
}
static float ToLinear470Bg(float gamma) {
return Powf(CLAMP(gamma, 0.f, 1.f), 2.8f);
}
static float FromLinear470Bg(float linear) {
return Powf(CLAMP(linear, 0.f, 1.f), 1.f / 2.8f);
}
static float ToLinearSmpte240(float gamma) {
if (gamma < 0.f) {
return 0.f;
} else if (gamma < 4.f * 0.022821585529445f) {
return gamma / 4.f;
} else if (gamma < 1.f) {
return Powf((gamma + 0.111572195921731f) / 1.111572195921731f, 1.f / 0.45f);
}
return 1.f;
}
static float FromLinearSmpte240(float linear) {
if (linear < 0.f) {
return 0.f;
} else if (linear < 0.022821585529445f) {
return linear * 4.f;
} else if (linear < 1.f) {
return 1.111572195921731f * Powf(linear, 0.45f) - 0.111572195921731f;
}
return 1.f;
}
static float ToLinearLog100(float gamma) {
// The function is non-bijective so choose the middle of [0, 0.01].
const float mid_interval = 0.01f / 2.f;
return (gamma <= 0.0f) ? mid_interval
: Powf(10.0f, 2.f * (MIN(gamma, 1.f) - 1.0f));
}
static float FromLinearLog100(float linear) {
return (linear < 0.01f) ? 0.0f : 1.0f + Log10f(MIN(linear, 1.f)) / 2.0f;
}
static float ToLinearLog100Sqrt10(float gamma) {
// The function is non-bijective so choose the middle of [0, 0.00316227766f[.
const float mid_interval = 0.00316227766f / 2.f;
return (gamma <= 0.0f) ? mid_interval
: Powf(10.0f, 2.5f * (MIN(gamma, 1.f) - 1.0f));
}
static float FromLinearLog100Sqrt10(float linear) {
return (linear < 0.00316227766f) ? 0.0f
: 1.0f + Log10f(MIN(linear, 1.f)) / 2.5f;
}
static float ToLinearIec61966(float gamma) {
if (gamma <= -4.5f * 0.018053968510807f) {
return Powf((-gamma + 0.09929682680944f) / -1.09929682680944f, 1.f / 0.45f);
} else if (gamma < 4.5f * 0.018053968510807f) {
return gamma / 4.5f;
}
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
}
static float FromLinearIec61966(float linear) {
if (linear <= -0.018053968510807f) {
return -1.09929682680944f * Powf(-linear, 0.45f) + 0.09929682680944f;
} else if (linear < 0.018053968510807f) {
return linear * 4.5f;
}
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
}
static float ToLinearBt1361(float gamma) {
if (gamma < -0.25f) {
return -0.25f;
} else if (gamma < 0.f) {
return Powf((gamma - 0.02482420670236f) / -0.27482420670236f, 1.f / 0.45f) /
-4.f;
} else if (gamma < 4.5f * 0.018053968510807f) {
return gamma / 4.5f;
} else if (gamma < 1.f) {
return Powf((gamma + 0.09929682680944f) / 1.09929682680944f, 1.f / 0.45f);
}
return 1.f;
}
static float FromLinearBt1361(float linear) {
if (linear < -0.25f) {
return -0.25f;
} else if (linear < 0.f) {
return -0.27482420670236f * Powf(-4.f * linear, 0.45f) + 0.02482420670236f;
} else if (linear < 0.018053968510807f) {
return linear * 4.5f;
} else if (linear < 1.f) {
return 1.09929682680944f * Powf(linear, 0.45f) - 0.09929682680944f;
}
return 1.f;
}
static float ToLinearPq(float gamma) {
if (gamma > 0.f) {
const float pow_gamma = Powf(gamma, 32.f / 2523.f);
const float num = MAX(pow_gamma - 107.f / 128.f, 0.0f);
const float den = MAX(2413.f / 128.f - 2392.f / 128.f * pow_gamma, FLT_MIN);
return Powf(num / den, 4096.f / 653.f);
}
return 0.f;
}
static float FromLinearPq(float linear) {
if (linear > 0.f) {
const float pow_linear = Powf(linear, 653.f / 4096.f);
const float num = 107.f / 128.f + 2413.f / 128.f * pow_linear;
const float den = 1.0f + 2392.f / 128.f * pow_linear;
return Powf(num / den, 2523.f / 32.f);
}
return 0.f;
}
static float ToLinearSmpte428(float gamma) {
return Powf(MAX(gamma, 0.f), 2.6f) / 0.91655527974030934f;
}
static float FromLinearSmpte428(float linear) {
return Powf(0.91655527974030934f * MAX(linear, 0.f), 1.f / 2.6f);
}
// Conversion in BT.2100 requires RGB info. Simplify to gamma correction here.
static float ToLinearHlg(float gamma) {
if (gamma < 0.f) {
return 0.f;
} else if (gamma <= 0.5f) {
return Powf((gamma * gamma) * (1.f / 3.f), 1.2f);
}
return Powf((expf((gamma - 0.55991073f) / 0.17883277f) + 0.28466892f) / 12.0f,
1.2f);
}
static float FromLinearHlg(float linear) {
linear = Powf(linear, 1.f / 1.2f);
if (linear < 0.f) {
return 0.f;
} else if (linear <= (1.f / 12.f)) {
return sqrtf(3.f * linear);
}
return 0.17883277f * logf(12.f * linear - 0.28466892f) + 0.55991073f;
}
uint32_t SharpYuvGammaToLinear(uint16_t v, int bit_depth,
SharpYuvTransferFunctionType transfer_type) {
float v_float, linear;
if (transfer_type == kSharpYuvTransferFunctionSrgb) {
return ToLinearSrgb(v, bit_depth);
}
v_float = (float)v / ((1 << bit_depth) - 1);
switch (transfer_type) {
case kSharpYuvTransferFunctionBt709:
case kSharpYuvTransferFunctionBt601:
case kSharpYuvTransferFunctionBt2020_10Bit:
case kSharpYuvTransferFunctionBt2020_12Bit:
linear = ToLinear709(v_float);
break;
case kSharpYuvTransferFunctionBt470M:
linear = ToLinear470M(v_float);
break;
case kSharpYuvTransferFunctionBt470Bg:
linear = ToLinear470Bg(v_float);
break;
case kSharpYuvTransferFunctionSmpte240:
linear = ToLinearSmpte240(v_float);
break;
case kSharpYuvTransferFunctionLinear:
return v;
case kSharpYuvTransferFunctionLog100:
linear = ToLinearLog100(v_float);
break;
case kSharpYuvTransferFunctionLog100_Sqrt10:
linear = ToLinearLog100Sqrt10(v_float);
break;
case kSharpYuvTransferFunctionIec61966:
linear = ToLinearIec61966(v_float);
break;
case kSharpYuvTransferFunctionBt1361:
linear = ToLinearBt1361(v_float);
break;
case kSharpYuvTransferFunctionSmpte2084:
linear = ToLinearPq(v_float);
break;
case kSharpYuvTransferFunctionSmpte428:
linear = ToLinearSmpte428(v_float);
break;
case kSharpYuvTransferFunctionHlg:
linear = ToLinearHlg(v_float);
break;
default:
assert(0);
linear = 0;
break;
}
return (uint32_t)Roundf(linear * ((1 << 16) - 1));
}
uint16_t SharpYuvLinearToGamma(uint32_t v, int bit_depth,
SharpYuvTransferFunctionType transfer_type) {
float v_float, linear;
if (transfer_type == kSharpYuvTransferFunctionSrgb) {
return FromLinearSrgb(v, bit_depth);
}
v_float = (float)v / ((1 << 16) - 1);
switch (transfer_type) {
case kSharpYuvTransferFunctionBt709:
case kSharpYuvTransferFunctionBt601:
case kSharpYuvTransferFunctionBt2020_10Bit:
case kSharpYuvTransferFunctionBt2020_12Bit:
linear = FromLinear709(v_float);
break;
case kSharpYuvTransferFunctionBt470M:
linear = FromLinear470M(v_float);
break;
case kSharpYuvTransferFunctionBt470Bg:
linear = FromLinear470Bg(v_float);
break;
case kSharpYuvTransferFunctionSmpte240:
linear = FromLinearSmpte240(v_float);
break;
case kSharpYuvTransferFunctionLinear:
return v;
case kSharpYuvTransferFunctionLog100:
linear = FromLinearLog100(v_float);
break;
case kSharpYuvTransferFunctionLog100_Sqrt10:
linear = FromLinearLog100Sqrt10(v_float);
break;
case kSharpYuvTransferFunctionIec61966:
linear = FromLinearIec61966(v_float);
break;
case kSharpYuvTransferFunctionBt1361:
linear = FromLinearBt1361(v_float);
break;
case kSharpYuvTransferFunctionSmpte2084:
linear = FromLinearPq(v_float);
break;
case kSharpYuvTransferFunctionSmpte428:
linear = FromLinearSmpte428(v_float);
break;
case kSharpYuvTransferFunctionHlg:
linear = FromLinearHlg(v_float);
break;
default:
assert(0);
linear = 0;
break;
}
return (uint16_t)Roundf(linear * ((1 << bit_depth) - 1));
}
|