File: ieeehalfprecision.c

package info (click to toggle)
libwebsockets 4.3.5-3
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 31,404 kB
  • sloc: ansic: 194,409; javascript: 1,550; sh: 1,387; cpp: 505; java: 461; perl: 405; xml: 118; makefile: 76; awk: 5
file content (228 lines) | stat: -rw-r--r-- 6,746 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/******************************************************************************
 *
 * Filename:    ieeehalfprecision.c
 * Programmer:  James Tursa
 * Version:     1.0
 * Date:        March 3, 2009
 * Copyright:   (c) 2009 by James Tursa, All Rights Reserved
 *
 *  This code uses the BSD License:
 *
 *  Redistribution and use in source and binary forms, with or without 
 *  modification, are permitted provided that the following conditions are 
 *  met:
 *
 *     * Redistributions of source code must retain the above copyright 
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright 
 *       notice, this list of conditions and the following disclaimer in 
 *       the documentation and/or other materials provided with the distribution
 *      
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * This file contains C code to convert between IEEE double, single, and half
 * precision floating point formats. The intended use is for standalone C code
 * that does not rely on MATLAB mex.h. The bit pattern for the half precision
 * floating point format is stored in a 16-bit unsigned int variable. The half
 * precision bit pattern definition is:
 *
 * 1 bit sign bit
 * 5 bits exponent, biased by 15
 * 10 bits mantissa, hidden leading bit, normalized to 1.0
 *
 * Special floating point bit patterns recognized and supported:
 *
 * All exponent bits zero:
 * - If all mantissa bits are zero, then number is zero (possibly signed)
 * - Otherwise, number is a denormalized bit pattern
 *
 * All exponent bits set to 1:
 * - If all mantissa bits are zero, then number is +Infinity or -Infinity
 * - Otherwise, number is NaN (Not a Number)
 *
 * For the denormalized cases, note that 2^(-24) is the smallest number that can
 * be represented in half precision exactly. 2^(-25) will convert to 2^(-24)
 * because of the rounding algorithm used, and 2^(-26) is too small and
 * underflows to zero.
 *
 ******************************************************************************/

/*
  changes by K. Rogovin:
  - changed macros UINT16_TYPE, etc to types from stdint.h
    (i.e. UINT16_TYPE-->uint16_t, INT16_TYPE-->int16_t, etc)

  - removed double conversion routines.

  - changed run time checks of endianness to compile time macro.

  - removed return value from routines

  - changed source parameter type from * to const *

  - changed pointer types from void ot uint16_t and uint32_t 
 */

/*
 * andy@warmcat.com:
 *
 *  - clean style and indenting
 *  - convert to single operation
 *  - export as lws_
 */

#include <string.h>
#include <stdint.h>

void
lws_singles2halfp(uint16_t *hp, uint32_t x)
{
	uint32_t xs, xe, xm;
	uint16_t hs, he, hm;
	int hes;

	if (!(x & 0x7FFFFFFFu)) {
		/* Signed zero */
		*hp = (uint16_t)(x >> 16);

		return;
	}

	xs = x & 0x80000000u;  // Pick off sign bit
	xe = x & 0x7F800000u;  // Pick off exponent bits
	xm = x & 0x007FFFFFu;  // Pick off mantissa bits

	if (xe == 0) {  // Denormal will underflow, return a signed zero
		*hp = (uint16_t) (xs >> 16);
		return;
	}

	if (xe == 0x7F800000u) {  // Inf or NaN (all the exponent bits are set)
		if (!xm) { // If mantissa is zero ...
			*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
			return;
		}

		*hp = (uint16_t) 0xFE00u; // NaN, only 1st mantissa bit set

		return;
	}

	/* Normalized number */

	hs = (uint16_t) (xs >> 16); // Sign bit
	/* Exponent unbias the single, then bias the halfp */
	hes = ((int)(xe >> 23)) - 127 + 15;

	if (hes >= 0x1F) {  // Overflow
		*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
		return;
	}

	if (hes <= 0) {  // Underflow
		if ((14 - hes) > 24)
			/*
			 * Mantissa shifted all the way off & no
			 * rounding possibility
			 */
			hm = (uint16_t) 0u;  // Set mantissa to zero
		else {
			xm |= 0x00800000u;  // Add the hidden leading bit
			hm = (uint16_t) (xm >> (14 - hes)); // Mantissa
			if ((xm >> (13 - hes)) & 1u) // Check for rounding
				/* Round, might overflow into exp bit,
				 * but this is OK */
				hm = (uint16_t)(hm + 1u);
		}
		/* Combine sign bit and mantissa bits, biased exponent is 0 */
		*hp = hs | hm;

		return;
	}

	he = (uint16_t)(hes << 10); // Exponent
	hm = (uint16_t)(xm >> 13); // Mantissa

	if (xm & 0x00001000u) // Check for rounding
		/* Round, might overflow to inf, this is OK */
		*hp = (uint16_t)((hs | he | hm) + (uint16_t)1u);
	else
		*hp = hs | he | hm;  // No rounding
}

void
lws_halfp2singles(uint32_t *xp, uint16_t h)
{
	uint16_t hs, he, hm;
	uint32_t xs, xe, xm;
	int32_t xes;
	int e;

	if (!(h & 0x7FFFu)) {  // Signed zero
		*xp = ((uint32_t)h) << 16;  // Return the signed zero

		return;
	}

	hs = h & 0x8000u;  // Pick off sign bit
	he = h & 0x7C00u;  // Pick off exponent bits
	hm = h & 0x03FFu;  // Pick off mantissa bits

	if (!he) {  // Denormal will convert to normalized
		e = -1;

		/* figure out how much extra to adjust the exponent */
		do {
			e++;
			hm = (uint16_t)(hm << 1);
			/* Shift until leading bit overflows into exponent */
		} while (!(hm & 0x0400u));

		xs = ((uint32_t) hs) << 16; // Sign bit

		/* Exponent unbias the halfp, then bias the single */
		xes = ((int32_t)(he >> 10)) - 15 + 127 - e;
		xe = (uint32_t)(xes << 23); // Exponent
		xm = ((uint32_t)(hm & 0x03FFu)) << 13; // Mantissa

		*xp = xs | xe | xm;

		return;
	}

	if (he == 0x7C00u) {  /* Inf or NaN (all the exponent bits are set) */
		if (!hm) { /* If mantissa is zero ...
			  * Signed Inf
			  */
			*xp = (((uint32_t)hs) << 16) | ((uint32_t)0x7F800000u);

			return;
		}

		 /* ... NaN, only 1st mantissa bit set */
		*xp = (uint32_t)0xFFC00000u;

		return;
	}

	/* Normalized number */

	xs = ((uint32_t)hs) << 16; // Sign bit
	/* Exponent unbias the halfp, then bias the single */
	xes = ((int32_t)(he >> 10)) - 15 + 127;
	xe = (uint32_t)(xes << 23); // Exponent
	xm = ((uint32_t)hm) << 13; // Mantissa

	/* Combine sign bit, exponent bits, and mantissa bits */
	*xp = xs | xe | xm;
}