1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/******************************************************************************
*
* Filename: ieeehalfprecision.c
* Programmer: James Tursa
* Version: 1.0
* Date: March 3, 2009
* Copyright: (c) 2009 by James Tursa, All Rights Reserved
*
* This code uses the BSD License:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* This file contains C code to convert between IEEE double, single, and half
* precision floating point formats. The intended use is for standalone C code
* that does not rely on MATLAB mex.h. The bit pattern for the half precision
* floating point format is stored in a 16-bit unsigned int variable. The half
* precision bit pattern definition is:
*
* 1 bit sign bit
* 5 bits exponent, biased by 15
* 10 bits mantissa, hidden leading bit, normalized to 1.0
*
* Special floating point bit patterns recognized and supported:
*
* All exponent bits zero:
* - If all mantissa bits are zero, then number is zero (possibly signed)
* - Otherwise, number is a denormalized bit pattern
*
* All exponent bits set to 1:
* - If all mantissa bits are zero, then number is +Infinity or -Infinity
* - Otherwise, number is NaN (Not a Number)
*
* For the denormalized cases, note that 2^(-24) is the smallest number that can
* be represented in half precision exactly. 2^(-25) will convert to 2^(-24)
* because of the rounding algorithm used, and 2^(-26) is too small and
* underflows to zero.
*
******************************************************************************/
/*
changes by K. Rogovin:
- changed macros UINT16_TYPE, etc to types from stdint.h
(i.e. UINT16_TYPE-->uint16_t, INT16_TYPE-->int16_t, etc)
- removed double conversion routines.
- changed run time checks of endianness to compile time macro.
- removed return value from routines
- changed source parameter type from * to const *
- changed pointer types from void ot uint16_t and uint32_t
*/
/*
* andy@warmcat.com:
*
* - clean style and indenting
* - convert to single operation
* - export as lws_
*/
#include <string.h>
#include <stdint.h>
void
lws_singles2halfp(uint16_t *hp, uint32_t x)
{
uint32_t xs, xe, xm;
uint16_t hs, he, hm;
int hes;
if (!(x & 0x7FFFFFFFu)) {
/* Signed zero */
*hp = (uint16_t)(x >> 16);
return;
}
xs = x & 0x80000000u; // Pick off sign bit
xe = x & 0x7F800000u; // Pick off exponent bits
xm = x & 0x007FFFFFu; // Pick off mantissa bits
if (xe == 0) { // Denormal will underflow, return a signed zero
*hp = (uint16_t) (xs >> 16);
return;
}
if (xe == 0x7F800000u) { // Inf or NaN (all the exponent bits are set)
if (!xm) { // If mantissa is zero ...
*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
return;
}
*hp = (uint16_t) 0xFE00u; // NaN, only 1st mantissa bit set
return;
}
/* Normalized number */
hs = (uint16_t) (xs >> 16); // Sign bit
/* Exponent unbias the single, then bias the halfp */
hes = ((int)(xe >> 23)) - 127 + 15;
if (hes >= 0x1F) { // Overflow
*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
return;
}
if (hes <= 0) { // Underflow
if ((14 - hes) > 24)
/*
* Mantissa shifted all the way off & no
* rounding possibility
*/
hm = (uint16_t) 0u; // Set mantissa to zero
else {
xm |= 0x00800000u; // Add the hidden leading bit
hm = (uint16_t) (xm >> (14 - hes)); // Mantissa
if ((xm >> (13 - hes)) & 1u) // Check for rounding
/* Round, might overflow into exp bit,
* but this is OK */
hm = (uint16_t)(hm + 1u);
}
/* Combine sign bit and mantissa bits, biased exponent is 0 */
*hp = hs | hm;
return;
}
he = (uint16_t)(hes << 10); // Exponent
hm = (uint16_t)(xm >> 13); // Mantissa
if (xm & 0x00001000u) // Check for rounding
/* Round, might overflow to inf, this is OK */
*hp = (uint16_t)((hs | he | hm) + (uint16_t)1u);
else
*hp = hs | he | hm; // No rounding
}
void
lws_halfp2singles(uint32_t *xp, uint16_t h)
{
uint16_t hs, he, hm;
uint32_t xs, xe, xm;
int32_t xes;
int e;
if (!(h & 0x7FFFu)) { // Signed zero
*xp = ((uint32_t)h) << 16; // Return the signed zero
return;
}
hs = h & 0x8000u; // Pick off sign bit
he = h & 0x7C00u; // Pick off exponent bits
hm = h & 0x03FFu; // Pick off mantissa bits
if (!he) { // Denormal will convert to normalized
e = -1;
/* figure out how much extra to adjust the exponent */
do {
e++;
hm = (uint16_t)(hm << 1);
/* Shift until leading bit overflows into exponent */
} while (!(hm & 0x0400u));
xs = ((uint32_t) hs) << 16; // Sign bit
/* Exponent unbias the halfp, then bias the single */
xes = ((int32_t)(he >> 10)) - 15 + 127 - e;
xe = (uint32_t)(xes << 23); // Exponent
xm = ((uint32_t)(hm & 0x03FFu)) << 13; // Mantissa
*xp = xs | xe | xm;
return;
}
if (he == 0x7C00u) { /* Inf or NaN (all the exponent bits are set) */
if (!hm) { /* If mantissa is zero ...
* Signed Inf
*/
*xp = (((uint32_t)hs) << 16) | ((uint32_t)0x7F800000u);
return;
}
/* ... NaN, only 1st mantissa bit set */
*xp = (uint32_t)0xFFC00000u;
return;
}
/* Normalized number */
xs = ((uint32_t)hs) << 16; // Sign bit
/* Exponent unbias the halfp, then bias the single */
xes = ((int32_t)(he >> 10)) - 15 + 127;
xe = (uint32_t)(xes << 23); // Exponent
xm = ((uint32_t)hm) << 13; // Mantissa
/* Combine sign bit, exponent bits, and mantissa bits */
*xp = xs | xe | xm;
}
|