1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
#!/usr/bin/python3
# PROJECT: Wavefront Alignments Algorithms
# LICENCE: MIT License
# AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
# DESCRIPTION: Compare alignment (*.alg) files
# USAGE: python3 wfa.alg.cmp.py -h
import sys
import re
import enum
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from scipy.constants.constants import alpha
################################################################################
# Distances & penalties
################################################################################
class Distance(enum.Enum):
edit = 1
gap_linear = 2
gap_affine = 3
gap_affine_2p = 4
class Penalties:
def __init__(self):
self.distance = Distance.edit
self.match = 0
self.mismatch = 0
self.indel = 0
self.gap_open1 = 0
self.gap_extend1 = 0
self.gap_open2 = 0
self.gap_extend2 = 0
def cigar_compute_score_edit(cigar_vector,penalties,ignore_misms):
score = 0
for op in cigar_vector:
if op[1] in "DI": score += int(op[0])
if op[1] in "X" and not ignore_misms: score += int(op[0])
return score
def cigar_compute_score_linear(cigar_vector,penalties,ignore_misms):
score = 0
for op in cigar_vector:
if op[1] == "M": score -= int(op[0]) * penalties.match
if op[1] == "X" and not ignore_misms: score -= int(op[0]) * penalties.mismatch
if op[1] in "DI": score -= int(op[0]) * penalties.indel
return score
def cigar_compute_score_affine(cigar_vector,penalties,ignore_misms):
score = 0
for op in cigar_vector:
if op[1] == "M": score -= int(op[0]) * penalties.match
if op[1] == "X" and not ignore_misms: score -= int(op[0]) * penalties.mismatch
if op[1] in "DI": score -= penalties.gap_open1 + int(op[0]) * penalties.gap_extend1
return score
def cigar_compute_score_affine_2p(cigar_vector,penalties,ignore_misms):
score = 0
for op in cigar_vector:
if op[1] == "M": score -= int(op[0]) * penalties.match
if op[1] == "X" and not ignore_misms: score -= int(op[0]) * penalties.mismatch
if op[1] in "DI":
score1 = penalties.gap_open1 + int(op[0]) * penalties.gap_extend1
score2 = penalties.gap_open2 + int(op[0]) * penalties.gap_extend2
score -= min(score1,score2)
return score
def cigar_compute_score(cigar,penalties,ignore_misms):
# Parse CIGAR
# cigar = "10M3D5M1I10M"
# cigar_vector = [('10', 'M'), ('3', 'D'), ('5', 'M'), ('1', 'I'), ('10', 'M')]
cigar_vector = re.findall(r'(\d+)([MXDI])',cigar)
# Evaluate CIGAR
if penalties.distance == Distance.edit:
return cigar_compute_score_edit(cigar_vector,penalties,ignore_misms)
elif penalties.distance == Distance.gap_linear:
return cigar_compute_score_linear(cigar_vector,penalties,ignore_misms)
elif penalties.distance == Distance.gap_affine:
return cigar_compute_score_affine(cigar_vector,penalties,ignore_misms)
elif penalties.distance == Distance.gap_affine_2p:
return cigar_compute_score_affine_2p(cigar_vector,penalties,ignore_misms)
################################################################################
# Alignment stats
################################################################################
class AlignmentStats:
def __init__(self):
self.score_same = 0
self.score_best1 = 0
self.score_best2 = 0
self.scores1 = list()
self.scores2 = list()
def __str__(self):
total_alignments = float(self.score_same + self.score_best1 + self.score_best2)
str = "[WFACompareAlignments::Stats]\n"
str += " => Alignments.common %d (%2.1f %%)\n" % (self.score_same,100.0*float(self.score_same)/total_alignments)
str += " => Alignments.best1 %d (%2.1f %%)\n" % (self.score_best1,100.0*float(self.score_best1)/total_alignments)
str += " => Alignments.best2 %d (%2.1f %%)" % (self.score_best2,100.0*float(self.score_best2)/total_alignments)
return str
def __repr__(self):
return __str__(self)
def plot_score_distribution(stats,input_path1,input_path2):
# Plot
matplotlib.use('Agg')
# Draw length histogram
fig,ax1 = plt.subplots()
ax1.set_xlabel('Score')
ax1.set_ylabel('Total Count')
# ax1.xaxis.grid(True)
# ax1.yaxis.grid(True)
# Plot score histogram
range_min = min(min(stats.scores1),min(stats.scores2))
range_max = max(max(stats.scores1),max(stats.scores2))
n, bins, patches = ax1.hist(stats.scores1,50,range=[range_min,range_max],color="royalblue",edgecolor='black',alpha=0.5)
n, bins, patches = ax1.hist(stats.scores2,50,range=[range_min,range_max],color="darkorange",edgecolor='black',alpha=0.5)
start, end = ax1.get_xlim()
ax1.set_xticks(np.arange(start,end,(end-start)/5))
# Leyend
handles = [Rectangle((0,0),1,1,color=c,ec="k") for c in ["royalblue","darkorange"]]
labels= [input_path1,input_path2]
plt.legend(handles,labels,loc="upper left")
# Plot
plt.title("Score distribution for '%s' and '%s'" % (input_path1,input_path2))
fig.savefig("wfaCmpAlg." + input_path1 + "." + input_path2 + ".png",
format='png',dpi=100,bbox_inches='tight')
#plt.show()
################################################################################
# Compare both files
################################################################################
def compare_alignments(input_path1,input_path2,penalties,use_score,ignore_misms,verbose):
# Alignment stats
stats = AlignmentStats()
# Read both files and compare
input_file1 = open(input_path1,"rt")
input_file2 = open(input_path2,"rt")
# Read lines
line_no = 0
while True:
# Read lines
line_no += 1
line1 = input_file1.readline()
if not line1: break # End of file
line2 = input_file2.readline()
if not line2:
print("[WFACompareAlignments] Files unsynch")
exit(-1)
# Extract alignments
fields1 = line1.split()
fields2 = line2.split()
if use_score:
cigar1 = None
cigar2 = None
score1 = int(fields1[0]) if len(fields1)<=2 else int(fields1[2])
score2 = int(fields2[0]) if len(fields2)<=2 else int(fields2[2])
else:
cigar1 = fields1[1] if len(fields1)<=2 else fields1[5]
cigar2 = fields2[1] if len(fields2)<=2 else fields2[5]
# Evaluate CIGAR's score
score1 = cigar_compute_score(cigar1,penalties,ignore_misms)
score2 = cigar_compute_score(cigar2,penalties,ignore_misms)
# Update stats
stats.scores1.append(score1)
stats.scores2.append(score2)
if score1 == score2:
stats.score_same += 1
elif score1 > score2:
stats.score_best1 += 1
else:
stats.score_best2 += 1
# Verbose
if verbose and score1 != score2:
print(">Failed::%d" % line_no)
print(" s1=%d\t%s" % (score1,cigar1))
print(" s2=%d\t%s" % (score2,cigar2))
# Close files
input_file1.close()
input_file2.close()
# return stats
return stats
################################################################################
# Main
################################################################################
# Configure arguments
parser = argparse.ArgumentParser()
parser.add_argument('-i1','--input1',required=True,help='Input file1 (*.alg)')
parser.add_argument('-i2','--input2',required=True,help='Input file2 (*.alg)')
parser.add_argument('-e','--edit',
help='Score alignments using edit distance (--edit)')
parser.add_argument('-l','--gap-linear',
help='Score alignments using gap-linear distance (--gap-linear=M,X,I)')
parser.add_argument('-g','--gap-affine',
help='Score alignments using gap-affine distance (--gap-affine=M,X,O,E)')
parser.add_argument('-G','--gap-affine-2p',
help='Score alignments using gap-affine-2p distance (--gap-affine-2p=M,X,O1,E1,O2,E2)')
parser.add_argument('--use-score', action='store_true',default=False,
help='Compares the score provided in the file (default=use-cigar)')
parser.add_argument('--ignore-misms', action='store_true',default=False,
help='Ignores mismatches when computing the score (default=disable)')
parser.add_argument('-p','--plot', action='store_true',default=False,
help='Plots score distribution of both inputs (default=disable)')
parser.add_argument('-v','--verbose', action='store_true',default=False,
help='Display comparison differences (default=disable)')
parser.add_argument('-H',action='store_true',dest="human_readable",default=False)
# Parse arguments
args = parser.parse_args()
# Select distance
penalties = Penalties()
if args.edit is not None:
pass # Default
elif args.gap_linear is not None:
values = args.gap_linear.split(',')
penalties.distance = Distance.gap_linear
penalties.match = int(values[0])
penalties.mismatch = int(values[1])
penalties.indel = int(values[2])
elif args.gap_affine is not None:
values = args.gap_affine.split(',')
penalties.distance = Distance.gap_affine
penalties.match = int(values[0])
penalties.mismatch = int(values[1])
penalties.gap_open1 = int(values[2])
penalties.gap_extend1 = int(values[3])
elif args.gap_affine_2p is not None:
values = args.gap_affine_2p.split(',')
penalties.distance = Distance.gap_affine_2p
penalties.match = int(values[0])
penalties.mismatch = int(values[1])
penalties.gap_open1 = int(values[2])
penalties.gap_extend1 = int(values[3])
penalties.gap_open2 = int(values[4])
penalties.gap_extend2 = int(values[5])
else:
print("[WFACompareAlignments] No distance provided. Using edit-distance (default)")
# Check penalties
if penalties.match > 0:
print("[WFACompareAlignments] Match penalty must be negative or zero")
exit(-1)
if penalties.mismatch < 0 or \
penalties.mismatch < 0 or \
penalties.gap_open1 < 0 or \
penalties.gap_extend1 < 0 or \
penalties.gap_open2 < 0 or \
penalties.gap_extend2 < 0:
print("[WFACompareAlignments] Penalties must be positive or zero")
exit(-1)
# Compare alignments from both files
stats = compare_alignments(
args.input1,args.input2,penalties,
args.use_score,args.ignore_misms,args.verbose)
print(stats) # Display stats
# Plot score distribution
if args.plot:
plot_score_distribution(stats,args.input1,args.input2)
|