1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
#!/usr/bin/python3
# PROJECT: Wavefront Alignments Algorithms
# LICENCE: MIT License
# AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
# DESCRIPTION: Plot WFA alignment matrices
# USAGE: python3 wfa.plot.py -h
import sys
import copy
import glob
import os.path
import argparse
import warnings
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.ticker as mticker
import seaborn as sns
################################################################################
# WFA-file parsing
################################################################################
def wfa_parse_file(filename):
# Log
print('[Parsing]',end='',flush=True)
# Parse
wfa_info = {}
with open(filename) as fp:
line = fp.readline() # Read line
while line:
# Parse data
if line[0] == '#':
fields = line.split();
if fields[1] == "Heatmap":
matrix_name = fields[2]
matrix_list = []
matrix_list.append(fp.readline().strip().split(','))
line = fp.readline()
while line and line[0] != '#':
matrix_list.append(line.strip().split(','))
line = fp.readline()
M = np.matrix(matrix_list).astype(int)
M = np.where(M==-1,np.nan,M)
wfa_info[matrix_name] = M
# Parse next line
if not line: break
else: continue
elif fields[1] == "List":
if len(fields) <= 3:
wfa_info[fields[2]] = None
else:
CIGAR = np.matrix(fields[3].replace(","," ")).astype(int)
wfa_info[fields[2]] = CIGAR
else:
wfa_info[fields[1]] = fields[2]
# Read next line
line = fp.readline()
# Process some values
wfa_info["WFAMode"] = wfa_info["WFAMode"][1:-1]
wfa_info["Distance"] = wfa_info["Penalties"][1:-1].split(',')[0]
# Return
return wfa_info
################################################################################
# WFA-Heatmap plotting
################################################################################
def wfa_plot_ticks(ax,data,detailed):
# Compute dimensions
ylen = data.shape[0]
xlen = data.shape[1]
plen = int(wfa_info["PatternLength"])
tlen = int(wfa_info["TextLength"])
# Detailed mode
if detailed:
# Parameters
pattern = wfa_info["Pattern"]
text = wfa_info["Text"]
# Hacky font size estimation
label_size = 80.0/float(max(xlen,ylen))
# Set Y-axis (major)
y_ticks_loc = np.arange(-0.5,ylen,1)
ax.yaxis.set_minor_locator(mticker.FixedLocator(y_ticks_loc))
ax.set_yticks(y_ticks_loc)
ax.set_yticklabels([])
# Set Y-axis (minor)
ax.set_yticks(np.arange(0,ylen,1),minor=True)
ax.set_yticklabels([y for y in pattern],fontsize=label_size,fontweight='bold',minor=True)
# Set X-axis (major)
x_ticks_loc = np.arange(-0.5,xlen,1)
ax.xaxis.set_minor_locator(mticker.FixedLocator(x_ticks_loc))
ax.set_xticks(x_ticks_loc)
ax.set_xticklabels([])
# Set X-axis (minor)
ax.set_xticks(np.arange(0,xlen,1),minor=True)
ax.set_xticklabels([x for x in text],fontsize=label_size,fontweight='bold',minor=True)
# Set X on top
ax.xaxis.tick_top()
# Hide minor dashes
ax.tick_params(axis='both',which='minor',length=0)
# Gridlines (based on major)
ax.grid(which='major',color="black",linestyle='-',linewidth=0.25)
else:
# X-ticks
x_ticks = [i for i in range(0,xlen-1,xlen//5)]
if x_ticks[-1]+5 < xlen-1: x_ticks.append(xlen-1)
else: x_ticks[-1] = xlen-1
x_ratio = tlen/xlen
x_ticks_labels = [int(i*x_ratio) for i in x_ticks]
x_ticks_labels[-1] = tlen-1
# Y-ticks
y_ticks = [i for i in range(0,ylen-1,ylen//5)]
if y_ticks[-1]+5 < ylen-1: y_ticks.append(ylen-1)
else: y_ticks[-1] = ylen-1
y_ratio = plen/ylen
y_ticks_labels = [int(i*y_ratio) for i in y_ticks]
y_ticks_labels[-1] = plen-1
# Set ticks
ax.set_yticks(y_ticks)
ax.set_yticklabels(y_ticks_labels,fontsize=6)
ax.set_xticks(x_ticks)
ax.set_xticklabels(x_ticks_labels,fontsize=6)
# Set grid
ax.grid(which='major',color="black",linestyle='-',linewidth=0.25)
def wfa_plot_wavefront(wfa_info,title,ax,data,detailed,
xlabel=False,ylabel=False):
# Compute dimensions
ylen = data.shape[0]
xlen = data.shape[1]
# Title
ax.set_title(title,fontsize=10)
# Set ticks & grid
wfa_plot_ticks(ax,data,detailed)
# Set labels
if xlabel: ax.set_xlabel('Text',fontsize=8)
if ylabel: ax.set_ylabel('Pattern',fontsize=8)
# Create colorbar
#cmap = LinearSegmentedColormap.from_list('rg',['tab:green','yellow','tab:red'],N=256)
cmap = copy.copy(plt.cm.jet)
cmap.set_bad('whitesmoke')
# Heatmap
im = ax.imshow(data,cmap=cmap)
# Detailed mode (Loop over data and create text annotations)
if detailed:
fontsize = 80.0/float(max(xlen,ylen))
for i in range(len(data)):
for j in range(len(data[i])):
if data[i,j]>=0:
ax.text(j,i,int(data[i,j]),ha="center",va="center",color='w',fontsize=fontsize,fontweight='bold')
# Return
return im
def wfa_plot_cigar(ax,wfa_info):
# Parameters
plen = int(wfa_info["PatternLength"])
tlen = int(wfa_info["TextLength"])
ylen = wfa_info["M"].shape[0]
xlen = wfa_info["M"].shape[1]
marker_size = 80.0/float(max(xlen,ylen))
# Plot CIGAR series
def wfa_plot_cigar_scaled(cigar,x_ratio,y_ratio,marker,color,label):
x = np.floor(cigar[:,0].astype('float64') * x_ratio).astype('int') if x_ratio < 1.0 else cigar[:,0]
y = np.floor(cigar[:,1].astype('float64') * y_ratio).astype('int') if y_ratio < 1.0 else cigar[:,1]
ax.scatter([x],[y],marker=marker,color=color,s=marker_size,linewidths=0,label=label)
# Compute dims
x_ratio = xlen/tlen
y_ratio = ylen/plen
# Fetch CIGAR
cigar_m = wfa_info["CIGAR-M"]
cigar_x = wfa_info["CIGAR-X"]
cigar_i = wfa_info["CIGAR-I"]
cigar_d = wfa_info["CIGAR-D"]
# Plot CIGAR
if (cigar_m is not None): wfa_plot_cigar_scaled(cigar_m,x_ratio,y_ratio,',','limegreen','match')
if (cigar_x is not None): wfa_plot_cigar_scaled(cigar_x,x_ratio,y_ratio,'o','red','misms')
if (cigar_i is not None): wfa_plot_cigar_scaled(cigar_i,x_ratio,y_ratio,'>','orange','ins')
if (cigar_d is not None): wfa_plot_cigar_scaled(cigar_d,x_ratio,y_ratio,'v','blue','del')
ax.legend(loc="upper right",prop={'size': 3})
def wfa_plot_xtra(wfa_info,title,ax,data,detailed,
xlabel=False,ylabel=False):
# Title
ax.set_title(title,fontsize=10)
# Set ticks & grid
wfa_plot_ticks(ax,data,detailed)
# Set labels
if xlabel: ax.set_xlabel('Text',fontsize=8)
if ylabel: ax.set_ylabel('Pattern',fontsize=8)
# Create colorbar
cmap_ext = colors.ListedColormap(['dodgerblue','darkred'])
cmap_ext_bounds = [10,20]
cmap_ext_norm = colors.BoundaryNorm(cmap_ext_bounds,cmap_ext.N)
cmap_ext.set_bad('whitesmoke')
# Heatmap
im = ax.imshow(data,cmap=cmap_ext)
# Plot CIGAR
if 'A' in wfa_info["WFAMode"]: wfa_plot_cigar(ax,wfa_info)
# Return
return im
def wfa_plot(filename,wfa_info,dpi,mode,detailed):
# Log
print('[Plotting]',end='',flush=True)
# Parameters
plen = int(wfa_info["PatternLength"])
tlen = int(wfa_info["TextLength"])
ylen = wfa_info["M"].shape[0]
xlen = wfa_info["M"].shape[1]
# Create plot
compact = (mode=="compact");
extended = (mode=="extended");
if compact:
fig, ax1 = plt.subplots(nrows=1,ncols=1,dpi=dpi,sharex=True)
im1 = wfa_plot_wavefront(wfa_info,'M-Wavefront',ax1,wfa_info["M"],detailed,xlabel=True,ylabel=True)
elif extended or wfa_info["Distance"]=="Edit":
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,dpi=dpi,sharex=True)
im1 = wfa_plot_wavefront(wfa_info,'M-Wavefront',ax1,wfa_info["M"],detailed,xlabel=True,ylabel=True)
im3 = wfa_plot_xtra(wfa_info,'CIGAR',ax2,wfa_info["Extend"],detailed,xlabel=True)
elif wfa_info["Distance"]=="GapLineal" or wfa_info["Distance"]=="GapAffine":
fig, (ax1,ax2,ax3) = plt.subplots(nrows=1,ncols=3,dpi=dpi,sharex=True)
im1 = wfa_plot_wavefront(wfa_info,'M-Wavefront',ax1,wfa_info["M"],detailed,xlabel=True,ylabel=True)
im2 = wfa_plot_wavefront(wfa_info,'I1-Wavefront',ax2,wfa_info["I1"],detailed,xlabel=True)
im3 = wfa_plot_wavefront(wfa_info,'D1-Wavefront',ax3,wfa_info["D1"],detailed,xlabel=True)
elif wfa_info["Distance"]=="GapAffine2p":
fig, ((ax1,ax2,ax5),(ax3,ax4,ax6)) = plt.subplots(nrows=2,ncols=3,dpi=dpi,sharex=True)
im1 = wfa_plot_wavefront(wfa_info,'M-Wavefront',ax1,wfa_info["M"],detailed,xlabel=True,ylabel=True)
im2 = wfa_plot_wavefront(wfa_info,'I1-Wavefront',ax2,wfa_info["I1"],detailed,xlabel=True)
im4 = wfa_plot_wavefront(wfa_info,'D1-Wavefront',ax4,wfa_info["D1"],detailed,xlabel=True)
im5 = wfa_plot_wavefront(wfa_info,'I2-Wavefront',ax5,wfa_info["I2"],detailed,ylabel=True)
im6 = wfa_plot_wavefront(wfa_info,'D2-Wavefront',ax6,wfa_info["D2"],detailed)
im3 = wfa_plot_xtra(wfa_info,'CIGAR',ax3,wfa_info["Extend"],detailed)
# Color bar
if compact:
p0 = ax1.get_position().get_points().flatten()
p1 = p0
pass
elif extended or wfa_info["Distance"]=="Edit":
p0 = ax1.get_position().get_points().flatten()
p1 = ax2.get_position().get_points().flatten()
pass
elif wfa_info["Distance"]=="GapLineal" or wfa_info["Distance"]=="GapAffine":
p0 = ax1.get_position().get_points().flatten()
p1 = ax3.get_position().get_points().flatten()
elif wfa_info["Distance"]=="GapAffine2p":
p0 = ax3.get_position().get_points().flatten()
p1 = ax6.get_position().get_points().flatten()
ax_cbar = fig.add_axes([p0[0],0,p1[2]-p0[0],0.025])
ax_cbar.tick_params(labelsize=6)
plt.colorbar(im1,cax=ax_cbar,orientation='horizontal')
# Title
file = os.path.basename(filename).replace('.plot','')
title = "WFA-Plot(%s) %s[%s]" % (file,wfa_info["Penalties"],wfa_info["WFAMode"])
fig.suptitle(title,fontsize=10)
plt.subplots_adjust(top=0.85)
# Plot
plt.savefig(filename.replace('.plot','.png'),bbox_inches='tight')
################################################################################
# Main
################################################################################
# Configure arguments
parser = argparse.ArgumentParser()
parser.add_argument('-i','--input',action='store',help='Input file (*.plot)')
parser.add_argument('--dpi',type=int,action='store',default=1000,help='Plot resolution (default=1000)') # More than 2000 is hard to handle
parser.add_argument('--mode',action='store',default='compact',help='Plot mode in {compact,extended,full}')
parser.add_argument('-d','--detailed',action='store_true',default=False,help='Plot score values and sequences')
parser.add_argument('-H',action='store_true',dest="human_readable",default=False)
# Parse arguments
args = parser.parse_args()
# Open input
if args.input:
input_files = [args.input]
else:
input_files = glob.glob("*.plot")
print('[WFA2png] Searching all *.plot ( Found %d file%c)' % (len(input_files),'s' if len(input_files)>1 else ' '))
# Plot each WFA file
print('[WFA2png] Plotting at %d dpi' % (args.dpi))
idx = 0
for filename in input_files:
print('[WFA2png] [#%d] Generating \'%s\' ' % (idx,filename),end='',flush=True)
wfa_info = wfa_parse_file(filename)
wfa_plot(filename,wfa_info,args.dpi,args.mode,args.detailed)
print('[Done!]',)
idx += 1
|