1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* The MIT License
*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
* VERSION: v21.02.15
* DESCRIPTION: Simple managed-memory stack that reduces memory allocation
* overheads. Serves memory from large memory segments and frees all memory
* requested at once.
*/
#include "utils/commons.h"
#include "mm_stack.h"
/*
* Debug
*/
//#define MM_STACK_FORCE_MALLOC
/*
* Constants
*/
#define MM_STACK_INITIAL_SEGMENTS 10
#define MM_STACK_INITIAL_MALLOC_REQUESTS 10
#define MM_STACK_INITIAL_STATES 10
/*
* Stack state
*/
typedef struct {
uint64_t segment_idx;
uint64_t segment_used;
uint64_t num_malloc_requests;
} mm_stack_state_t;
/*
* Memory Segments
*/
typedef struct {
uint64_t size; // Total memory available
void* memory; // Memory
uint64_t used; // Bytes used (offset to memory next free byte)
} mm_stack_segment_t;
/*
* Segments
*/
mm_stack_segment_t* mm_stack_segment_new(
mm_stack_t* const mm_stack) {
// Allocate handler
mm_stack_segment_t* const segment = (mm_stack_segment_t*) malloc(sizeof(mm_stack_segment_t));
// Memory
segment->size = mm_stack->segment_size;
segment->memory = malloc(mm_stack->segment_size);
segment->used = 0;
// Add to segments
vector_insert(mm_stack->segments,segment,mm_stack_segment_t*);
// Return
return segment;
}
void mm_stack_segment_clear(
mm_stack_segment_t* const segment) {
segment->used = 0;
}
void mm_stack_segment_delete(
mm_stack_segment_t* const segment) {
free(segment->memory);
free(segment);
}
/*
* Setup
*/
mm_stack_t* mm_stack_new(
const uint64_t segment_size) {
// Allocate handler
mm_stack_t* const mm_stack = (mm_stack_t*) malloc(sizeof(mm_stack_t));
// Memory segments
mm_stack->segments = vector_new(MM_STACK_INITIAL_SEGMENTS,mm_stack_segment_t*);
mm_stack->segment_size = segment_size;
#ifndef MM_STACK_FORCE_MALLOC
mm_stack_segment_new(mm_stack);
#endif
mm_stack->current_segment_idx = 0;
// Malloc memory
mm_stack->malloc_requests = vector_new(MM_STACK_INITIAL_MALLOC_REQUESTS,void*);
// Stack states
mm_stack->states = vector_new(MM_STACK_INITIAL_STATES,mm_stack_state_t);
// Return
return mm_stack;
}
void mm_stack_clear(
mm_stack_t* const mm_stack) {
// Clear first memory segment and discard the rest
mm_stack_segment_t* const segment = *vector_get_elm(mm_stack->segments,0,mm_stack_segment_t*);
mm_stack_segment_clear(segment);
mm_stack->current_segment_idx = 0;
// Free malloc memory
VECTOR_ITERATE(mm_stack->malloc_requests,mem_ptr,m,void*) {
free(*mem_ptr);
}
vector_clear(mm_stack->malloc_requests);
// Clear states
vector_clear(mm_stack->states);
}
void mm_stack_delete(
mm_stack_t* const mm_stack) {
// Delete memory segments
VECTOR_ITERATE(mm_stack->segments,segment_ptr,p,mm_stack_segment_t*) {
mm_stack_segment_delete(*segment_ptr);
}
vector_delete(mm_stack->segments);
// Free malloc memory
VECTOR_ITERATE(mm_stack->malloc_requests,mem_ptr,m,void*) {
free(*mem_ptr);
}
vector_delete(mm_stack->malloc_requests);
// Clear states
vector_delete(mm_stack->states);
// Free handler
free(mm_stack);
}
/*
* Allocator
*/
mm_stack_segment_t* mm_stack_fetch_segment(
mm_stack_t* const mm_stack,
const uint64_t num_bytes) {
// Fetch current segment
mm_stack_segment_t* const curr_segment =
*vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
// // Check overall segment size
// if (num_bytes > curr_segment->size/2) { // Never buy anything you cannot afford twice
// return NULL; // Memory request over max-request size
// }
// Check available segment size
if (curr_segment->used + num_bytes <= curr_segment->size) {
return curr_segment;
}
// Check overall segment size
if (num_bytes > curr_segment->size) {
return NULL; // Memory request over segment size
}
// Get free segment
const uint64_t num_segments = vector_get_used(mm_stack->segments);
++(mm_stack->current_segment_idx);
if (mm_stack->current_segment_idx < num_segments) {
// Get next segment
mm_stack_segment_t* const segment =
*vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
// Clear
mm_stack_segment_clear(segment);
// Return
return segment;
}
// Add new segment
return mm_stack_segment_new(mm_stack);
}
void* mm_stack_allocate(
mm_stack_t* const mm_stack,
const uint64_t num_bytes,
const bool zero_mem,
const uint64_t align_bytes) {
// Zero check
if (num_bytes == 0) {
fprintf(stderr,"MMStack error. Zero bytes requested\n");
exit(1);
}
// Add payload
const uint64_t num_bytes_allocated = num_bytes + align_bytes;
// Fetch segment
#ifdef MM_STACK_FORCE_MALLOC
mm_stack_segment_t* const segment = NULL; // Force malloc memory
#else
mm_stack_segment_t* const segment = mm_stack_fetch_segment(mm_stack,num_bytes_allocated);
#endif
// Allocate memory
void* memory_base ;
if (segment != NULL) {
// Segment-memory
memory_base = segment->memory + segment->used;
if (zero_mem) memset(memory_base,0,num_bytes_allocated); // Set zero
segment->used += num_bytes_allocated; // Update segment
} else {
// Malloc-memory
memory_base = malloc(num_bytes_allocated);
if (zero_mem) memset(memory_base,0,num_bytes_allocated); // Set zero
// Add malloc-request
vector_insert(mm_stack->malloc_requests,memory_base,void*);
}
// Check alignment
if (align_bytes == 0) return memory_base;
// Align memory request
void* memory_aligned = memory_base + align_bytes;
memory_aligned = memory_aligned - ((uintptr_t)memory_aligned % align_bytes);
return memory_aligned;
}
/*
* Push/pop states
*/
void mm_stack_push(
mm_stack_t* const mm_stack) {
// Get new stack-state
mm_stack_state_t* stack_state;
vector_alloc_new(mm_stack->states,mm_stack_state_t,stack_state);
// Store current state
mm_stack_segment_t* const current_segment =
*vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
stack_state->segment_idx = mm_stack->current_segment_idx;
stack_state->segment_used = current_segment->used;
stack_state->num_malloc_requests = vector_get_used(mm_stack->malloc_requests);
}
void mm_stack_pop(
mm_stack_t* const mm_stack) {
// Get last stack-state
mm_stack_state_t* const stack_state = vector_get_last_elm(mm_stack->states,mm_stack_state_t);
vector_dec_used(mm_stack->states);
// Restore segment-memory state
mm_stack->current_segment_idx = stack_state->segment_idx;
mm_stack_segment_t* const current_segment =
*(vector_get_elm(mm_stack->segments,stack_state->segment_idx,mm_stack_segment_t*));
current_segment->used = stack_state->segment_used;
// Restore malloc-memory state (free requests)
const uint64_t total_malloc_requests = vector_get_used(mm_stack->malloc_requests);
void** const malloc_requests = vector_get_mem(mm_stack->malloc_requests,void*);
uint64_t i;
for (i=stack_state->num_malloc_requests;i<total_malloc_requests;++i) {
free(*(malloc_requests+i)); // Free
}
vector_set_used(mm_stack->malloc_requests,stack_state->num_malloc_requests);
}
/*
* Display
*/
void mm_stack_print(
FILE* const stream,
mm_stack_t* const mm_stack) {
// Print header
fprintf(stream,"MMStack.report\n");
// Print segment information
const uint64_t num_segments = vector_get_used(mm_stack->segments);
const uint64_t segment_size = mm_stack->segment_size;
fprintf(stream," => Segments.allocated %" PRIu64 "\n",num_segments);
fprintf(stream," => Segments.size %" PRIu64 " MB\n",segment_size/(1024*1024));
fprintf(stream," => Memory.available %" PRIu64 " MB\n",num_segments*(segment_size/(1024*1024)));
}
|