File: mm_stack.c

package info (click to toggle)
libwfa2 2.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,072 kB
  • sloc: ansic: 13,812; python: 540; cpp: 500; makefile: 268; sh: 176; lisp: 41
file content (268 lines) | stat: -rw-r--r-- 9,168 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 *                             The MIT License
 *
 * Wavefront Alignment Algorithms
 * Copyright (c) 2017 by Santiago Marco-Sola  <santiagomsola@gmail.com>
 *
 * This file is part of Wavefront Alignment Algorithms.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * PROJECT: Wavefront Alignment Algorithms
 * AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
 * VERSION: v21.02.15
 * DESCRIPTION: Simple managed-memory stack that reduces memory allocation
 *   overheads. Serves memory from large memory segments and frees all memory
 *   requested at once.
 */

#include "utils/commons.h"
#include "mm_stack.h"

/*
 * Debug
 */
//#define MM_STACK_FORCE_MALLOC

/*
 * Constants
 */
#define MM_STACK_INITIAL_SEGMENTS              10
#define MM_STACK_INITIAL_MALLOC_REQUESTS       10
#define MM_STACK_INITIAL_STATES                10

/*
 * Stack state
 */
typedef struct {
  uint64_t segment_idx;
  uint64_t segment_used;
  uint64_t num_malloc_requests;
} mm_stack_state_t;

/*
 * Memory Segments
 */
typedef struct {
  uint64_t size;                // Total memory available
  void* memory;                 // Memory
  uint64_t used;                // Bytes used (offset to memory next free byte)
} mm_stack_segment_t;

/*
 * Segments
 */
mm_stack_segment_t* mm_stack_segment_new(
    mm_stack_t* const mm_stack) {
  // Allocate handler
  mm_stack_segment_t* const segment = (mm_stack_segment_t*) malloc(sizeof(mm_stack_segment_t));
  // Memory
  segment->size = mm_stack->segment_size;
  segment->memory = malloc(mm_stack->segment_size);
  segment->used = 0;
  // Add to segments
  vector_insert(mm_stack->segments,segment,mm_stack_segment_t*);
  // Return
  return segment;
}
void mm_stack_segment_clear(
    mm_stack_segment_t* const segment) {
  segment->used = 0;
}
void mm_stack_segment_delete(
    mm_stack_segment_t* const segment) {
  free(segment->memory);
  free(segment);
}
/*
 * Setup
 */
mm_stack_t* mm_stack_new(
    const uint64_t segment_size) {
  // Allocate handler
  mm_stack_t* const mm_stack = (mm_stack_t*) malloc(sizeof(mm_stack_t));
  // Memory segments
  mm_stack->segments = vector_new(MM_STACK_INITIAL_SEGMENTS,mm_stack_segment_t*);
  mm_stack->segment_size = segment_size;
#ifndef MM_STACK_FORCE_MALLOC
  mm_stack_segment_new(mm_stack);
#endif
  mm_stack->current_segment_idx = 0;
  // Malloc memory
  mm_stack->malloc_requests = vector_new(MM_STACK_INITIAL_MALLOC_REQUESTS,void*);
  // Stack states
  mm_stack->states = vector_new(MM_STACK_INITIAL_STATES,mm_stack_state_t);
  // Return
  return mm_stack;
}
void mm_stack_clear(
    mm_stack_t* const mm_stack) {
  // Clear first memory segment and discard the rest
  mm_stack_segment_t* const segment = *vector_get_elm(mm_stack->segments,0,mm_stack_segment_t*);
  mm_stack_segment_clear(segment);
  mm_stack->current_segment_idx = 0;
  // Free malloc memory
  VECTOR_ITERATE(mm_stack->malloc_requests,mem_ptr,m,void*) {
    free(*mem_ptr);
  }
  vector_clear(mm_stack->malloc_requests);
  // Clear states
  vector_clear(mm_stack->states);
}
void mm_stack_delete(
    mm_stack_t* const mm_stack) {
  // Delete memory segments
  VECTOR_ITERATE(mm_stack->segments,segment_ptr,p,mm_stack_segment_t*) {
    mm_stack_segment_delete(*segment_ptr);
  }
  vector_delete(mm_stack->segments);
  // Free malloc memory
  VECTOR_ITERATE(mm_stack->malloc_requests,mem_ptr,m,void*) {
    free(*mem_ptr);
  }
  vector_delete(mm_stack->malloc_requests);
  // Clear states
  vector_delete(mm_stack->states);
  // Free handler
  free(mm_stack);
}
/*
 * Allocator
 */
mm_stack_segment_t* mm_stack_fetch_segment(
    mm_stack_t* const mm_stack,
    const uint64_t num_bytes) {
  // Fetch current segment
  mm_stack_segment_t* const curr_segment =
      *vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
//  // Check overall segment size
//  if (num_bytes > curr_segment->size/2) { // Never buy anything you cannot afford twice
//    return NULL; // Memory request over max-request size
//  }
  // Check available segment size
  if (curr_segment->used + num_bytes <= curr_segment->size) {
    return curr_segment;
  }
  // Check overall segment size
  if (num_bytes > curr_segment->size) {
    return NULL; // Memory request over segment size
  }
  // Get free segment
  const uint64_t num_segments = vector_get_used(mm_stack->segments);
  ++(mm_stack->current_segment_idx);
  if (mm_stack->current_segment_idx < num_segments) {
    // Get next segment
    mm_stack_segment_t* const segment =
        *vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
    // Clear
    mm_stack_segment_clear(segment);
    // Return
    return segment;
  }
  // Add new segment
  return mm_stack_segment_new(mm_stack);
}
void* mm_stack_allocate(
    mm_stack_t* const mm_stack,
    const uint64_t num_bytes,
    const bool zero_mem,
    const uint64_t align_bytes) {
  // Zero check
  if (num_bytes == 0) {
    fprintf(stderr,"MMStack error. Zero bytes requested\n");
    exit(1);
  }
  // Add payload
  const uint64_t num_bytes_allocated = num_bytes + align_bytes;
  // Fetch segment
#ifdef MM_STACK_FORCE_MALLOC
  mm_stack_segment_t* const segment = NULL; // Force malloc memory
#else
  mm_stack_segment_t* const segment = mm_stack_fetch_segment(mm_stack,num_bytes_allocated);
#endif
  // Allocate memory
  void* memory_base ;
  if (segment != NULL) {
    // Segment-memory
    memory_base = segment->memory + segment->used;
    if (zero_mem) memset(memory_base,0,num_bytes_allocated); // Set zero
    segment->used += num_bytes_allocated; // Update segment
  } else {
    // Malloc-memory
    memory_base = malloc(num_bytes_allocated);
    if (zero_mem) memset(memory_base,0,num_bytes_allocated); // Set zero
    // Add malloc-request
    vector_insert(mm_stack->malloc_requests,memory_base,void*);
  }
  // Check alignment
  if (align_bytes == 0) return memory_base;
  // Align memory request
  void* memory_aligned = memory_base + align_bytes;
  memory_aligned = memory_aligned - ((uintptr_t)memory_aligned % align_bytes);
  return memory_aligned;
}
/*
 * Push/pop states
 */
void mm_stack_push(
    mm_stack_t* const mm_stack) {
  // Get new stack-state
  mm_stack_state_t* stack_state;
  vector_alloc_new(mm_stack->states,mm_stack_state_t,stack_state);
  // Store current state
  mm_stack_segment_t* const current_segment =
      *vector_get_elm(mm_stack->segments,mm_stack->current_segment_idx,mm_stack_segment_t*);
  stack_state->segment_idx = mm_stack->current_segment_idx;
  stack_state->segment_used = current_segment->used;
  stack_state->num_malloc_requests = vector_get_used(mm_stack->malloc_requests);
}
void mm_stack_pop(
    mm_stack_t* const mm_stack) {
  // Get last stack-state
  mm_stack_state_t* const stack_state = vector_get_last_elm(mm_stack->states,mm_stack_state_t);
  vector_dec_used(mm_stack->states);
  // Restore segment-memory state
  mm_stack->current_segment_idx = stack_state->segment_idx;
  mm_stack_segment_t* const current_segment =
      *(vector_get_elm(mm_stack->segments,stack_state->segment_idx,mm_stack_segment_t*));
  current_segment->used = stack_state->segment_used;
  // Restore malloc-memory state (free requests)
  const uint64_t total_malloc_requests = vector_get_used(mm_stack->malloc_requests);
  void** const malloc_requests = vector_get_mem(mm_stack->malloc_requests,void*);
  uint64_t i;
  for (i=stack_state->num_malloc_requests;i<total_malloc_requests;++i) {
    free(*(malloc_requests+i)); // Free
  }
  vector_set_used(mm_stack->malloc_requests,stack_state->num_malloc_requests);
}
/*
 * Display
 */
void mm_stack_print(
    FILE* const stream,
    mm_stack_t* const mm_stack) {
  // Print header
  fprintf(stream,"MMStack.report\n");
  // Print segment information
  const uint64_t num_segments = vector_get_used(mm_stack->segments);
  const uint64_t segment_size = mm_stack->segment_size;
  fprintf(stream,"  => Segments.allocated %" PRIu64 "\n",num_segments);
  fprintf(stream,"  => Segments.size      %" PRIu64 " MB\n",segment_size/(1024*1024));
  fprintf(stream,"  => Memory.available   %" PRIu64 " MB\n",num_segments*(segment_size/(1024*1024)));
}