1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
* DESCRIPTION: Edit-Distance based BPM alignment algorithm
*/
#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "edit/edit_bpm.h"
#include "utils/dna_text.h"
/*
* Constants
*/
#define BPM_ALPHABET_LENGTH 4
#define BPM_W64_LENGTH UINT64_LENGTH
#define BPM_W64_SIZE UINT64_SIZE
#define BPM_W64_ONES UINT64_MAX
#define BPM_W64_MASK (1ull<<63)
/*
* Pattern Accessors
*/
#define BPM_PATTERN_PEQ_IDX(word_pos,encoded_character) ((word_pos*BPM_ALPHABET_LENGTH)+(encoded_character))
#define BPM_PATTERN_BDP_IDX(position,num_words,word_pos) ((position)*(num_words)+(word_pos))
/*
* Advance block functions (Improved)
* const @vector Eq,mask;
* return (Pv,Mv,PHout,MHout);
*/
#define BPM_ADVANCE_BLOCK(Eq,mask,Pv,Mv,PHin,MHin,PHout,MHout) \
/* Computes modulator vector {Xv,Xh} ( cases A&C ) */ \
const uint64_t Xv = Eq | Mv; \
const uint64_t _Eq = Eq | MHin; \
const uint64_t Xh = (((_Eq & Pv) + Pv) ^ Pv) | _Eq; \
/* Calculate Hout */ \
uint64_t Ph = Mv | ~(Xh | Pv); \
uint64_t Mh = Pv & Xh; \
/* Account Hout that propagates for the next block */ \
PHout = (Ph & mask)!=0; \
MHout = (Mh & mask)!=0; \
/* Hout become the Hin of the next cell */ \
Ph <<= 1; \
Mh <<= 1; \
/* Account Hin coming from the previous block */ \
Ph |= PHin; \
Mh |= MHin; \
/* Finally, generate the Vout */ \
Pv = Mh | ~(Xv | Ph); \
Mv = Ph & Xv
/*
* Setup
*/
void edit_bpm_pattern_compile(
bpm_pattern_t* const bpm_pattern,
char* const pattern,
const int pattern_length,
mm_allocator_t* const mm_allocator) {
// Calculate dimensions
const uint64_t pattern_num_words64 = DIV_CEIL(pattern_length,BPM_W64_LENGTH);
const uint64_t PEQ_length = pattern_num_words64*BPM_W64_LENGTH;
const uint64_t pattern_mod = pattern_length%BPM_W64_LENGTH;
// Init fields
bpm_pattern->pattern = pattern;
bpm_pattern->pattern_length = pattern_length;
bpm_pattern->pattern_num_words64 = pattern_num_words64;
bpm_pattern->pattern_mod = pattern_mod;
// Allocate memory
const uint64_t aux_vector_size = pattern_num_words64*BPM_W64_SIZE;
const uint64_t PEQ_size = BPM_ALPHABET_LENGTH*aux_vector_size;
const uint64_t score_size = pattern_num_words64*UINT64_SIZE;
const uint64_t total_memory = PEQ_size + 3*aux_vector_size + 2*score_size + (pattern_num_words64+1)*UINT64_SIZE;
void* memory = mm_allocator_malloc(mm_allocator,total_memory);
bpm_pattern->PEQ = memory; memory += PEQ_size;
bpm_pattern->P = memory; memory += aux_vector_size;
bpm_pattern->M = memory; memory += aux_vector_size;
bpm_pattern->level_mask = memory; memory += aux_vector_size;
bpm_pattern->score = memory; memory += score_size;
bpm_pattern->init_score = memory; memory += score_size;
bpm_pattern->pattern_left = memory;
// Init PEQ
memset(bpm_pattern->PEQ,0,PEQ_size);
uint64_t i;
for (i=0;i<pattern_length;++i) {
const uint8_t enc_char = dna_encode(pattern[i]);
const uint64_t block = i/BPM_W64_LENGTH;
const uint64_t mask = 1ull<<(i%BPM_W64_LENGTH);
bpm_pattern->PEQ[BPM_PATTERN_PEQ_IDX(block,enc_char)] |= mask;
}
for (;i<PEQ_length;++i) { // Padding
const uint64_t block = i/BPM_W64_LENGTH;
const uint64_t mask = 1ull<<(i%BPM_W64_LENGTH);
uint64_t j;
for (j=0;j<BPM_ALPHABET_LENGTH;++j) {
bpm_pattern->PEQ[BPM_PATTERN_PEQ_IDX(block,j)] |= mask;
}
}
// Init auxiliary data
uint64_t pattern_left = pattern_length;
const uint64_t top = pattern_num_words64-1;
memset(bpm_pattern->level_mask,0,aux_vector_size);
for (i=0;i<top;++i) {
bpm_pattern->level_mask[i] = BPM_W64_MASK;
bpm_pattern->init_score[i] = BPM_W64_LENGTH;
bpm_pattern->pattern_left[i] = pattern_left;
pattern_left = (pattern_left > BPM_W64_LENGTH) ? pattern_left-BPM_W64_LENGTH : 0;
}
for (;i<=pattern_num_words64;++i) {
bpm_pattern->pattern_left[i] = pattern_left;
pattern_left = (pattern_left > BPM_W64_LENGTH) ? pattern_left-BPM_W64_LENGTH : 0;
}
if (pattern_mod > 0) {
const uint64_t mask_shift = pattern_mod-1;
bpm_pattern->level_mask[top] = 1ull<<(mask_shift);
bpm_pattern->init_score[top] = pattern_mod;
} else {
bpm_pattern->level_mask[top] = BPM_W64_MASK;
bpm_pattern->init_score[top] = BPM_W64_LENGTH;
}
}
void edit_bpm_pattern_free(
bpm_pattern_t* const bpm_pattern,
mm_allocator_t* const mm_allocator) {
mm_allocator_free(mm_allocator,bpm_pattern->PEQ);
}
void edit_bpm_matrix_allocate(
bpm_matrix_t* const bpm_matrix,
const uint64_t pattern_length,
const uint64_t text_length,
mm_allocator_t* const mm_allocator) {
// Parameters
const uint64_t num_words64 = DIV_CEIL(pattern_length,BPM_W64_LENGTH);
// Allocate auxiliary matrix
const uint64_t aux_matrix_size = num_words64*UINT64_SIZE*(text_length+1); /* (+1 base-column) */
uint64_t* const Pv = (uint64_t*)mm_allocator_malloc(mm_allocator,aux_matrix_size);
uint64_t* const Mv = (uint64_t*)mm_allocator_malloc(mm_allocator,aux_matrix_size);
bpm_matrix->Mv = Mv;
bpm_matrix->Pv = Pv;
// CIGAR
bpm_matrix->cigar = cigar_new(pattern_length+text_length,mm_allocator);
}
void edit_bpm_matrix_free(
bpm_matrix_t* const bpm_matrix,
mm_allocator_t* const mm_allocator) {
mm_allocator_free(mm_allocator,bpm_matrix->Mv);
mm_allocator_free(mm_allocator,bpm_matrix->Pv);
// CIGAR
cigar_free(bpm_matrix->cigar);
}
/*
* Edit distance computation using BPM
*/
void edit_bpm_reset_search_cutoff(
uint8_t* const top_level,
uint64_t* const P,
uint64_t* const M,
int64_t* const score,
const int64_t* const init_score,
const uint64_t max_distance) {
// Calculate the top level (maximum bit-word for cut-off purposes)
const uint8_t y = (max_distance>0) ? (max_distance+(BPM_W64_LENGTH-1))/BPM_W64_LENGTH : 1;
*top_level = y;
// Reset score,P,M
uint64_t i;
P[0]=BPM_W64_ONES;
M[0]=0;
score[0] = init_score[0];
for (i=1;i<y;++i) {
P[i]=BPM_W64_ONES;
M[i]=0;
score[i] = score[i-1] + init_score[i];
}
}
void edit_bpm_compute_matrix(
bpm_matrix_t* const bpm_matrix,
bpm_pattern_t* const bpm_pattern,
char* const text,
const uint64_t text_length,
uint64_t max_distance) {
// Pattern variables
const uint64_t* PEQ = bpm_pattern->PEQ;
const uint64_t num_words64 = bpm_pattern->pattern_num_words64;
const uint64_t* const level_mask = bpm_pattern->level_mask;
int64_t* const score = bpm_pattern->score;
const int64_t* const init_score = bpm_pattern->init_score;
uint64_t* const Pv = bpm_matrix->Pv;
uint64_t* const Mv = bpm_matrix->Mv;
const uint64_t max_distance__1 = max_distance+1;
const uint8_t top = num_words64-1;
uint8_t top_level;
edit_bpm_reset_search_cutoff(&top_level,Pv,Mv,score,init_score,max_distance);
// Advance in DP-bit_encoded matrix
uint64_t text_position;
for (text_position=0;text_position<text_length;++text_position) {
// Fetch next character
const uint8_t enc_char = dna_encode(text[text_position]);
// Advance all blocks
uint64_t i,PHin=1,MHin=0,PHout,MHout;
for (i=0;i<top_level;++i) {
/* Calculate Step Data */
const uint64_t bdp_idx = BPM_PATTERN_BDP_IDX(text_position,num_words64,i);
const uint64_t next_bdp_idx = bdp_idx+num_words64;
uint64_t Pv_in = Pv[bdp_idx];
uint64_t Mv_in = Mv[bdp_idx];
const uint64_t mask = level_mask[i];
const uint64_t Eq = PEQ[BPM_PATTERN_PEQ_IDX(i,enc_char)];
/* Compute Block */
BPM_ADVANCE_BLOCK(Eq,mask,Pv_in,Mv_in,PHin,MHin,PHout,MHout);
/* Adjust score and swap propagate Hv */
score[i] += PHout-MHout;
Pv[next_bdp_idx] = Pv_in;
Mv[next_bdp_idx] = Mv_in;
PHin=PHout;
MHin=MHout;
}
// Cut-off
const uint8_t last = top_level-1;
if (score[last]<=max_distance__1 && last<top) {
const uint64_t last_score = score[last]+(MHin-PHin);
const uint64_t Peq = PEQ[BPM_PATTERN_PEQ_IDX(top_level,enc_char)];
if (last_score<=max_distance && (MHin || (Peq & 1))) {
// Init block V
const uint64_t bdp_idx = BPM_PATTERN_BDP_IDX(text_position,num_words64,top_level);
const uint64_t next_bdp_idx = bdp_idx+num_words64;
uint64_t Pv_in = BPM_W64_ONES;
uint64_t Mv_in = 0;
Pv[bdp_idx] = BPM_W64_ONES;
Mv[bdp_idx] = 0;
const uint64_t mask = level_mask[top_level];
/* Compute Block */
BPM_ADVANCE_BLOCK(Peq,mask,Pv_in,Mv_in,PHin,MHin,PHout,MHout);
/* Save Block Pv,Mv */
Pv[next_bdp_idx]=Pv_in;
Mv[next_bdp_idx]=Mv_in;
/* Set score & increment the top level block */
score[top_level] = last_score + init_score[top_level] + (PHout-MHout);
++top_level;
} else {
while (score[top_level-1] > (max_distance+init_score[top_level-1])) {
--top_level;
}
}
} else {
while (score[top_level-1] > (max_distance+init_score[top_level-1])) {
--top_level;
}
}
}
// Return optimal column/distance
// Check match
const int64_t current_score = score[top_level-1];
if (top_level==num_words64 && current_score<=max_distance) {
bpm_matrix->min_score = score[top_level-1];
bpm_matrix->min_score_column = text_length-1;
} else {
bpm_matrix->min_score = UINT64_MAX;
bpm_matrix->min_score_column = UINT64_MAX;
}
}
void edit_bpm_backtrace_matrix(
bpm_matrix_t* const bpm_matrix,
const bpm_pattern_t* const bpm_pattern,
char* const text) {
// Parameters
char* const pattern = bpm_pattern->pattern;
const uint64_t pattern_length = bpm_pattern->pattern_length;
const uint64_t* const Pv = bpm_matrix->Pv;
const uint64_t* const Mv = bpm_matrix->Mv;
char* const operations = bpm_matrix->cigar->operations;
int op_sentinel = bpm_matrix->cigar->end_offset-1;
// Retrieve the alignment. Store the match
const uint64_t num_words64 = bpm_pattern->pattern_num_words64;
int64_t h = bpm_matrix->min_score_column;
int64_t v = pattern_length - 1;
while (v >= 0 && h >= 0) {
const uint8_t block = v / UINT64_LENGTH;
const uint64_t bdp_idx = BPM_PATTERN_BDP_IDX(h+1,num_words64,block);
const uint64_t mask = 1L << (v % UINT64_LENGTH);
// CIGAR operation Test
if (Pv[bdp_idx] & mask) {
operations[op_sentinel--] = 'D';
--v;
} else if (Mv[(bdp_idx-num_words64)] & mask) {
operations[op_sentinel--] = 'I';
--h;
} else if ((text[h]==pattern[v])) {
operations[op_sentinel--] = 'M';
--h;
--v;
} else {
operations[op_sentinel--] = 'X';
--h;
--v;
}
}
while (h>=0) {operations[op_sentinel--] = 'I'; --h;}
while (v>=0) {operations[op_sentinel--] = 'D'; --v;}
bpm_matrix->cigar->begin_offset = op_sentinel+1;
}
void edit_bpm_compute(
bpm_matrix_t* const bpm_matrix,
bpm_pattern_t* const bpm_pattern,
char* const text,
const int text_length,
const int max_distance) {
// Fill Matrix (Pv,Mv)
edit_bpm_compute_matrix(
bpm_matrix,bpm_pattern,
text,text_length,max_distance);
// Check distance
if (bpm_matrix->min_score == UINT64_MAX) return;
// Backtrace and generate CIGAR
edit_bpm_backtrace_matrix(bpm_matrix,bpm_pattern,text);
}
|