1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
/*
* The MIT License
*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
*/
#include "utils/commons.h"
#include "wavefront_bialign.h"
#include "wavefront_unialign.h"
#include "wavefront_bialigner.h"
#include "wavefront_compute.h"
#include "wavefront_compute_affine.h"
#include "wavefront_compute_affine2p.h"
#include "wavefront_compute_edit.h"
#include "wavefront_compute_linear.h"
#include "wavefront_extend.h"
#include "wavefront_plot.h"
#include "wavefront_debug.h"
/*
* Config
*/
#define WF_BIALIGN_FALLBACK_MIN_SCORE 250
#define WF_BIALIGN_FALLBACK_MIN_LENGTH 100
/*
* Debug
*/
void wavefront_bialign_debug(
wf_bialign_breakpoint_t* const breakpoint,
const int align_level) {
// Parameters
const int breakpoint_h = WAVEFRONT_H(breakpoint->k_forward,breakpoint->offset_forward);
const int breakpoint_v = WAVEFRONT_V(breakpoint->k_forward,breakpoint->offset_forward);
// Prinf debug info
fprintf(stderr,"[WFA::BiAlign][Recursion=%d] ",align_level);
int i; for (i=0;i<align_level;++i) fprintf(stderr," ");
fprintf(stderr,"Breakpoint at (h,v,score,comp) = (%d,%d,%d,",
breakpoint_h,breakpoint_v,breakpoint->score);
switch (breakpoint->component) {
case affine2p_matrix_M: fprintf(stderr,"M"); break;
case affine2p_matrix_I1: fprintf(stderr,"I1"); break;
case affine2p_matrix_I2: fprintf(stderr,"I2"); break;
case affine2p_matrix_D1: fprintf(stderr,"D1"); break;
case affine2p_matrix_D2: fprintf(stderr,"D2"); break;
default: fprintf(stderr,"?"); break;
}
fprintf(stderr,")\n");
}
/*
* Bidirectional check breakpoints
*/
void wavefront_bialign_breakpoint_indel2indel(
wavefront_aligner_t* const wf_aligner,
const bool breakpoint_forward,
const int score_0,
const int score_1,
wavefront_t* const dwf_0,
wavefront_t* const dwf_1,
const affine2p_matrix_type component,
wf_bialign_breakpoint_t* const breakpoint) {
// Parameters
const int text_length = wf_aligner->text_length;
const int pattern_length = wf_aligner->pattern_length;
const int gap_open =
(component==affine2p_matrix_I1 || component==affine2p_matrix_D1) ?
wf_aligner->penalties.gap_opening1 : wf_aligner->penalties.gap_opening2;
// Check wavefronts overlapping
const int lo_0 = dwf_0->lo;
const int hi_0 = dwf_0->hi;
const int lo_1 = WAVEFRONT_K_INVERSE(dwf_1->hi,pattern_length,text_length);
const int hi_1 = WAVEFRONT_K_INVERSE(dwf_1->lo,pattern_length,text_length);
if (hi_1 < lo_0 || hi_0 < lo_1) return;
// Compute overlapping interval
const int min_hi = MIN(hi_0,hi_1);
const int max_lo = MAX(lo_0,lo_1);
int k_0;
for (k_0=max_lo;k_0<=min_hi;k_0++) {
const int k_1 = WAVEFRONT_K_INVERSE(k_0,pattern_length,text_length);
// Fetch offsets
const wf_offset_t doffset_0 = dwf_0->offsets[k_0];
const wf_offset_t doffset_1 = dwf_1->offsets[k_1];
const int dh_0 = WAVEFRONT_H(k_0,doffset_0);
const int dh_1 = WAVEFRONT_H(k_1,doffset_1);
// Check breakpoint d2d
if (dh_0 + dh_1 >= text_length && score_0 + score_1 - gap_open < breakpoint->score) {
if (breakpoint_forward) {
breakpoint->score_forward = score_0;
breakpoint->score_reverse = score_1;
breakpoint->k_forward = k_0;
breakpoint->k_reverse = k_1;
breakpoint->offset_forward = dh_0;
breakpoint->offset_reverse = dh_1;
} else {
breakpoint->score_forward = score_1;
breakpoint->score_reverse = score_0;
breakpoint->k_forward = k_1;
breakpoint->k_reverse = k_0;
breakpoint->offset_forward = dh_1;
breakpoint->offset_reverse = dh_0;
}
breakpoint->score = score_0 + score_1 - gap_open;
breakpoint->component = component;
// wavefront_bialign_debug(breakpoint,-1); // DEBUG
// No need to keep searching
return;
}
}
}
void wavefront_bialign_breakpoint_m2m(
wavefront_aligner_t* const wf_aligner,
const bool breakpoint_forward,
const int score_0,
const int score_1,
wavefront_t* const mwf_0,
wavefront_t* const mwf_1,
wf_bialign_breakpoint_t* const breakpoint) {
// Parameters
const int text_length = wf_aligner->text_length;
const int pattern_length = wf_aligner->pattern_length;
// Check wavefronts overlapping
const int lo_0 = mwf_0->lo;
const int hi_0 = mwf_0->hi;
const int lo_1 = WAVEFRONT_K_INVERSE(mwf_1->hi,pattern_length,text_length);
const int hi_1 = WAVEFRONT_K_INVERSE(mwf_1->lo,pattern_length,text_length);
if (hi_1 < lo_0 || hi_0 < lo_1) return;
// Compute overlapping interval
const int min_hi = MIN(hi_0,hi_1);
const int max_lo = MAX(lo_0,lo_1);
int k_0;
for (k_0=max_lo;k_0<=min_hi;k_0++) {
const int k_1 = WAVEFRONT_K_INVERSE(k_0,pattern_length,text_length);
// Fetch offsets
const wf_offset_t moffset_0 = mwf_0->offsets[k_0];
const wf_offset_t moffset_1 = mwf_1->offsets[k_1];
const int mh_0 = WAVEFRONT_H(k_0,moffset_0);
const int mh_1 = WAVEFRONT_H(k_1,moffset_1);
// Check breakpoint m2m
if (mh_0 + mh_1 >= text_length && score_0 + score_1 < breakpoint->score) {
if (breakpoint_forward) {
breakpoint->score_forward = score_0;
breakpoint->score_reverse = score_1;
breakpoint->k_forward = k_0;
breakpoint->k_reverse = k_1;
breakpoint->offset_forward = moffset_0;
breakpoint->offset_reverse = moffset_1;
} else {
breakpoint->score_forward = score_1;
breakpoint->score_reverse = score_0;
breakpoint->k_forward = k_1;
breakpoint->k_reverse = k_0;
breakpoint->offset_forward = moffset_1;
breakpoint->offset_reverse = moffset_0;
}
breakpoint->score = score_0 + score_1;
breakpoint->component = affine2p_matrix_M;
// wavefront_bialign_debug(breakpoint,-1); // DEBUG
// No need to keep searching
return;
}
}
}
/*
* Bidirectional find overlaps
*/
void wavefront_bialign_overlap(
wavefront_aligner_t* const wf_aligner_0,
wavefront_aligner_t* const wf_aligner_1,
const int score_0,
const int score_1,
const bool breakpoint_forward,
wf_bialign_breakpoint_t* const breakpoint) {
// Parameters
const int max_score_scope = wf_aligner_0->wf_components.max_score_scope;
const distance_metric_t distance_metric = wf_aligner_0->penalties.distance_metric;
const int gap_opening1 = wf_aligner_0->penalties.gap_opening1;
const int gap_opening2 = wf_aligner_0->penalties.gap_opening2;
// Fetch wavefronts-0
const int score_mod_0 = score_0 % max_score_scope;
wavefront_t* const mwf_0 = wf_aligner_0->wf_components.mwavefronts[score_mod_0];
if (mwf_0 == NULL) return;
wavefront_t* d1wf_0 = NULL, *i1wf_0 = NULL;
if (distance_metric >= gap_affine) {
d1wf_0 = wf_aligner_0->wf_components.d1wavefronts[score_mod_0];
i1wf_0 = wf_aligner_0->wf_components.i1wavefronts[score_mod_0];
}
wavefront_t* d2wf_0 = NULL, *i2wf_0 = NULL;
if (distance_metric == gap_affine_2p) {
d2wf_0 = wf_aligner_0->wf_components.d2wavefronts[score_mod_0];
i2wf_0 = wf_aligner_0->wf_components.i2wavefronts[score_mod_0];
}
// Traverse all scores-1
int i;
for (i=0;i<max_score_scope;++i) {
// Compute score
const int score_i = score_1 - i;
if (score_i < 0) break;
const int score_mod_i = score_i % max_score_scope;
// Check I2/D2-breakpoints (gap_affine_2p)
if (distance_metric == gap_affine_2p) {
if (score_0 + score_i - gap_opening2 >= breakpoint->score) continue;
// Check breakpoint d2d
wavefront_t* const d2wf_1 = wf_aligner_1->wf_components.d2wavefronts[score_mod_i];
if (d2wf_0 != NULL && d2wf_1 != NULL) {
wavefront_bialign_breakpoint_indel2indel(
wf_aligner_0,breakpoint_forward,score_0,score_i,
d2wf_0,d2wf_1,affine2p_matrix_D2,breakpoint);
}
// Check breakpoint i2i
wavefront_t* const i2wf_1 = wf_aligner_1->wf_components.i2wavefronts[score_mod_i];
if (i2wf_0 != NULL && i2wf_1 != NULL) {
wavefront_bialign_breakpoint_indel2indel(
wf_aligner_0,breakpoint_forward,score_0,score_i,
i2wf_0,i2wf_1,affine2p_matrix_I2,breakpoint);
}
}
// Check I1/D1-breakpoints (gap_affine)
if (distance_metric >= gap_affine) {
if (score_0 + score_i - gap_opening1 >= breakpoint->score) continue;
// Check breakpoint d2d
wavefront_t* const d1wf_1 = wf_aligner_1->wf_components.d1wavefronts[score_mod_i];
if (d1wf_0 != NULL && d1wf_1 != NULL) {
wavefront_bialign_breakpoint_indel2indel(
wf_aligner_0,breakpoint_forward,score_0,score_i,
d1wf_0,d1wf_1,affine2p_matrix_D1,breakpoint);
}
// Check breakpoint i2i
wavefront_t* const i1wf_1 = wf_aligner_1->wf_components.i1wavefronts[score_mod_i];
if (i1wf_0 != NULL && i1wf_1 != NULL) {
wavefront_bialign_breakpoint_indel2indel(
wf_aligner_0,breakpoint_forward,score_0,score_i,
i1wf_0,i1wf_1,affine2p_matrix_I1,breakpoint);
}
}
// Check M-breakpoints (indel, edit, gap-linear)
if (score_0 + score_i >= breakpoint->score) continue;
wavefront_t* const mwf_1 = wf_aligner_1->wf_components.mwavefronts[score_mod_i];
if (mwf_1 != NULL) {
wavefront_bialign_breakpoint_m2m(
wf_aligner_0,breakpoint_forward,
score_0,score_i,mwf_0,mwf_1,breakpoint);
}
}
}
/*
* Bidirectional breakpoint detection
*/
void wavefront_bialign_find_breakpoint_init(
wavefront_aligner_t* const alg_forward,
wavefront_aligner_t* const alg_reverse,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length,
const distance_metric_t distance_metric,
alignment_form_t* const form,
const affine2p_matrix_type component_begin,
const affine2p_matrix_type component_end) {
// Resize wavefront aligner
wavefront_unialign_resize(alg_forward,pattern,pattern_length,text,text_length,false);
wavefront_unialign_resize(alg_reverse,pattern,pattern_length,text,text_length,true);
// Configure form forward and reverse
alignment_span_t span_forward =
(form->pattern_begin_free > 0 || form->text_begin_free > 0) ? alignment_endsfree : alignment_end2end;
alignment_form_t form_forward = {
.span = span_forward,
.pattern_begin_free = form->pattern_begin_free,
.pattern_end_free = 0,
.text_begin_free = form->text_begin_free,
.text_end_free = 0,
};
alignment_span_t span_reverse =
(form->pattern_end_free > 0 || form->text_end_free > 0) ? alignment_endsfree : alignment_end2end;
alignment_form_t form_reverse = {
.span = span_reverse,
.pattern_begin_free = form->pattern_end_free,
.pattern_end_free = 0,
.text_begin_free = form->text_end_free,
.text_end_free = 0,
};
// Configure WF-compute function (global)
switch (distance_metric) {
case indel:
case edit:
alg_forward->align_status.wf_align_compute = &wavefront_compute_edit;
break;
case gap_linear:
alg_forward->align_status.wf_align_compute = &wavefront_compute_linear;
break;
case gap_affine:
alg_forward->align_status.wf_align_compute = &wavefront_compute_affine;
break;
case gap_affine_2p:
alg_forward->align_status.wf_align_compute = &wavefront_compute_affine2p;
break;
default:
fprintf(stderr,"[WFA] Distance function not implemented\n");
exit(1);
break;
}
// Initialize wavefront (forward)
alg_forward->align_status.num_null_steps = 0;
alg_forward->alignment_form = form_forward;
alg_forward->component_begin = component_begin;
alg_forward->component_end = component_end;
wavefront_unialign_initialize_wavefronts(alg_forward,pattern_length,text_length);
// Initialize wavefront (reverse)
alg_reverse->align_status.num_null_steps = 0;
alg_reverse->alignment_form = form_reverse;
alg_reverse->component_begin = component_end;
alg_reverse->component_end = component_begin;
wavefront_unialign_initialize_wavefronts(alg_reverse,pattern_length,text_length);
}
int wavefront_bialign_overlap_gopen_adjust(
wavefront_aligner_t* const wf_aligner,
const distance_metric_t distance_metric) {
switch (distance_metric) {
case gap_affine:
return wf_aligner->penalties.gap_opening1;
case gap_affine_2p:
return MAX(wf_aligner->penalties.gap_opening1,wf_aligner->penalties.gap_opening2);
case indel:
case edit:
case gap_linear:
default:
return 0;
}
}
int wavefront_bialign_find_breakpoint(
wavefront_bialigner_t* const bialigner,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length,
const distance_metric_t distance_metric,
alignment_form_t* const form,
const affine2p_matrix_type component_begin,
const affine2p_matrix_type component_end,
wf_bialign_breakpoint_t* const breakpoint,
const int align_level) {
// Parameters
wavefront_aligner_t* const alg_forward = bialigner->alg_forward;
wavefront_aligner_t* const alg_reverse = bialigner->alg_reverse;
// Init bialignment
wavefront_bialign_find_breakpoint_init(
alg_forward,alg_reverse,
pattern,pattern_length,text,text_length,
distance_metric,form,component_begin,component_end);
// DEBUG
alignment_system_t* const system = &alg_forward->system;
const int verbose = system->verbose;
if (verbose >= 2) {
wavefront_debug_prologue(alg_forward,pattern,pattern_length,text,text_length);
wavefront_debug_prologue(alg_reverse,pattern,pattern_length,text,text_length);
}
// Parameters
const int max_alignment_score = alg_forward->system.max_alignment_score;
const int max_antidiagonal = DPMATRIX_ANTIDIAGONAL(pattern_length,text_length) - 1; // Note: Even removing -1
void (*wf_align_compute)(wavefront_aligner_t* const,const int) = alg_forward->align_status.wf_align_compute;
int score_forward = 0, score_reverse = 0, forward_max_ak = 0, reverse_max_ak = 0;
bool end_reached;
// Plot
const bool plot_enabled = (alg_forward->plot != NULL);
if (plot_enabled) {
wavefront_plot(alg_forward,0,align_level);
wavefront_plot(alg_reverse,0,align_level);
}
// Prepare and perform first bialignment step
breakpoint->score = INT_MAX;
end_reached = wavefront_extend_end2end_max(alg_forward,score_forward,&forward_max_ak);
if (end_reached) return alg_forward->align_status.status;
end_reached = wavefront_extend_end2end_max(alg_reverse,score_reverse,&reverse_max_ak);
if (end_reached) return alg_reverse->align_status.status;
// Compute wavefronts of increasing score until both wavefronts overlap
int max_ak = 0;
bool last_wf_forward;
while (true) {
// Check close-to-collision
if (forward_max_ak + reverse_max_ak >= max_antidiagonal) break;
/*
* Compute next wavefront (Forward)
*/
++score_forward;
(*wf_align_compute)(alg_forward,score_forward);
if (plot_enabled) wavefront_plot(alg_forward,score_forward,align_level); // Plot
// Extend
end_reached = wavefront_extend_end2end_max(alg_forward,score_forward,&max_ak);
if (forward_max_ak < max_ak) forward_max_ak = max_ak;
last_wf_forward = true;
// Check end-reached and close-to-collision
if (end_reached) return alg_forward->align_status.status;
if (forward_max_ak + reverse_max_ak >= max_antidiagonal) break;
/*
* Compute next wavefront (Reverse)
*/
++score_reverse;
(*wf_align_compute)(alg_reverse,score_reverse);
if (plot_enabled) wavefront_plot(alg_reverse,score_reverse,align_level); // Plot
// Extend
end_reached = wavefront_extend_end2end_max(alg_reverse,score_reverse,&max_ak);
if (reverse_max_ak < max_ak) reverse_max_ak = max_ak;
last_wf_forward = false;
// Check end-reached and max-score-reached
if (end_reached) return alg_reverse->align_status.status;
if (score_reverse + score_forward >= max_alignment_score) return WF_STATUS_MAX_SCORE_REACHED;
// DEBUG
if (verbose >= 3 && score_forward % system->probe_interval_global == 0) {
wavefront_unialign_print_status(stderr,alg_forward,score_forward);
}
}
// Advance until overlap is found
const int max_score_scope = alg_forward->wf_components.max_score_scope;
const int gap_opening = wavefront_bialign_overlap_gopen_adjust(alg_forward,distance_metric);
while (true) {
if (last_wf_forward) {
// Check overlapping wavefronts
const int min_score_reverse = (score_reverse > max_score_scope-1) ? score_reverse - (max_score_scope-1) : 0;
if (score_forward + min_score_reverse - gap_opening >= breakpoint->score) break; // Done!
wavefront_bialign_overlap(alg_forward,alg_reverse,score_forward,score_reverse,true,breakpoint);
/*
* Compute next wavefront (Reverse)
*/
++score_reverse;
(*wf_align_compute)(alg_reverse,score_reverse);
if (plot_enabled) wavefront_plot(alg_reverse,score_reverse,align_level); // Plot
// Extend & check end-reached
end_reached = wavefront_extend_end2end(alg_reverse,score_reverse);
if (end_reached) return alg_reverse->align_status.status;
}
// Check overlapping wavefronts
const int min_score_forward = (score_forward > max_score_scope-1) ? score_forward - (max_score_scope-1) : 0;
if (min_score_forward + score_reverse - gap_opening >= breakpoint->score) break; // Done!
wavefront_bialign_overlap(alg_reverse,alg_forward,score_reverse,score_forward,false,breakpoint);
/*
* Compute next wavefront (Forward)
*/
++score_forward;
(*wf_align_compute)(alg_forward,score_forward);
if (plot_enabled) wavefront_plot(alg_forward,score_forward,align_level); // Plot
// Extend & check end-reached/max-score-reached
end_reached = wavefront_extend_end2end(alg_forward,score_forward);
if (end_reached) return alg_forward->align_status.status;
if (score_reverse + score_forward >= max_alignment_score) return WF_STATUS_MAX_SCORE_REACHED;
// Enable always
last_wf_forward = true;
}
// Return OK
return WF_STATUS_SUCCESSFUL;
}
/*
* Bidirectional Alignment (base cases)
*/
void wavefront_bialign_base(
wavefront_aligner_t* const wf_aligner,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length,
alignment_form_t* const form,
const affine2p_matrix_type component_begin,
const affine2p_matrix_type component_end,
const int align_level) {
// Parameters
wavefront_aligner_t* const alg_subsidiary = wf_aligner->bialigner->alg_subsidiary;
const int verbose = wf_aligner->system.verbose;
// Configure
alg_subsidiary->alignment_form = *form;
wavefront_unialign_init(
alg_subsidiary,pattern,pattern_length,
text,text_length,component_begin,component_end);
// DEBUG
if (verbose >= 2) {
wavefront_debug_prologue(alg_subsidiary,pattern,pattern_length,text,text_length);
}
// Wavefront align sequences
wavefront_unialign(alg_subsidiary);
wf_aligner->align_status.status = alg_subsidiary->align_status.status;
// DEBUG
if (verbose >= 2) {
wavefront_debug_epilogue(alg_subsidiary);
wavefront_debug_check_correct(wf_aligner);
}
// Append CIGAR
cigar_append(wf_aligner->cigar,alg_subsidiary->cigar);
if (align_level == 0) wf_aligner->cigar->score = alg_subsidiary->cigar->score;
}
void wavefront_bialign_exception(
wavefront_aligner_t* const wf_aligner,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length,
alignment_form_t* const form,
const affine2p_matrix_type component_begin,
const affine2p_matrix_type component_end,
const int align_level,
const int align_status) {
// Check max-score reached or unfeasible alignment
if (align_status == WF_STATUS_MAX_SCORE_REACHED ||
align_status == WF_STATUS_UNFEASIBLE) {
wf_aligner->align_status.status = align_status;
return;
}
// Check end reached
if (align_status == WF_STATUS_END_REACHED) {
wavefront_aligner_t* const alg_forward = wf_aligner->bialigner->alg_forward;
wavefront_aligner_t* const alg_reverse = wf_aligner->bialigner->alg_reverse;
// Retrieve score when end was reached
int score_reached;
if (alg_forward->align_status.status == WF_STATUS_END_REACHED) {
score_reached = alg_forward->align_status.score;
} else {
score_reached = alg_reverse->align_status.score;
}
// Fallback if possible
if (score_reached <= WF_BIALIGN_FALLBACK_MIN_SCORE) {
wavefront_bialign_base(
wf_aligner,pattern,pattern_length,text,text_length,
form,component_begin,component_end,align_level);
} else {
wf_aligner->align_status.status = WF_STATUS_UNFEASIBLE;
}
return;
}
// Otherwise
fprintf(stderr,"[WFA::BiAlign] Unknown condition\n");
exit(1);
}
/*
* Bidirectional Alignment
*/
void wavefront_bialign_init_half_0(
alignment_form_t* const global_form,
alignment_form_t* const half_form) {
// Align half_0
const alignment_span_t span_0 =
(global_form->pattern_begin_free > 0 ||
global_form->text_begin_free > 0) ?
alignment_endsfree : alignment_end2end;
half_form->span = span_0;
half_form->pattern_begin_free = global_form->pattern_begin_free;
half_form->pattern_end_free = 0;
half_form->text_begin_free = global_form->text_begin_free;
half_form->text_end_free = 0;
}
void wavefront_bialign_init_half_1(
alignment_form_t* const global_form,
alignment_form_t* const half_form) {
// Align half_0
const alignment_span_t span_1 =
(global_form->pattern_begin_free > 0 ||
global_form->text_begin_free > 0) ?
alignment_endsfree : alignment_end2end;
half_form->span = span_1;
half_form->pattern_begin_free = 0;
half_form->pattern_end_free = global_form->pattern_end_free;
half_form->text_begin_free = 0;
half_form->text_end_free = global_form->text_end_free;
}
void wavefront_bialign_alignment(
wavefront_aligner_t* const wf_aligner,
const char* const pattern,
const int pattern_begin,
const int pattern_end,
const char* const text,
const int text_begin,
const int text_end,
alignment_form_t* const form,
const affine2p_matrix_type component_begin,
const affine2p_matrix_type component_end,
const int score_remaining,
const int align_level) {
// Parameters
const int pattern_length = pattern_end - pattern_begin;
const int text_length = text_end - text_begin;
// Trivial cases
if (text_length == 0) {
cigar_append_deletion(wf_aligner->cigar,pattern_length);
return;
} else if (pattern_length == 0) {
cigar_append_insertion(wf_aligner->cigar,text_length);
return;
}
// Fall back to regular WFA
if (score_remaining <= WF_BIALIGN_FALLBACK_MIN_SCORE) {
wavefront_bialign_base(wf_aligner,
pattern+pattern_begin,pattern_length,
text+text_begin,text_length,
form,component_begin,component_end,align_level);
return;
}
// Find breakpoint in the alignment
wf_bialign_breakpoint_t breakpoint;
const int align_status = wavefront_bialign_find_breakpoint(
wf_aligner->bialigner,
pattern+pattern_begin,pattern_length,
text+text_begin,text_length,
wf_aligner->penalties.distance_metric,
form,component_begin,component_end,
&breakpoint,align_level);
// DEBUG
if (wf_aligner->system.verbose >= 2) {
wavefront_debug_epilogue(wf_aligner->bialigner->alg_forward);
wavefront_debug_epilogue(wf_aligner->bialigner->alg_reverse);
}
// Check status
if (align_status != WF_STATUS_SUCCESSFUL) {
wavefront_bialign_exception(wf_aligner,
pattern+pattern_begin,pattern_length,
text+text_begin,text_length,
form,component_begin,component_end,align_level,align_status);
return;
}
// Breakpoint found
const int breakpoint_h = WAVEFRONT_H(breakpoint.k_forward,breakpoint.offset_forward);
const int breakpoint_v = WAVEFRONT_V(breakpoint.k_forward,breakpoint.offset_forward);
// DEBUG
if (wf_aligner->system.verbose >= 3) wavefront_bialign_debug(&breakpoint,align_level);
// Parameters
wavefront_plot_t* const plot = wf_aligner->plot;
// Align half_0
alignment_form_t form_0;
if (plot) {
plot->offset_v = pattern_begin;
plot->offset_h = text_begin;
}
wavefront_bialign_init_half_0(form,&form_0);
wavefront_bialign_alignment(wf_aligner,
pattern,pattern_begin,pattern_begin+breakpoint_v,
text,text_begin,text_begin+breakpoint_h,
&form_0,component_begin,breakpoint.component,
breakpoint.score_forward,align_level+1);
if (wf_aligner->align_status.status != WF_STATUS_SUCCESSFUL) return;
// Align half_1
alignment_form_t form_1;
if (plot) {
plot->offset_v = pattern_begin + breakpoint_v;
plot->offset_h = text_begin + breakpoint_h;
}
wavefront_bialign_init_half_1(form,&form_1);
wavefront_bialign_alignment(wf_aligner,
pattern,pattern_begin+breakpoint_v,pattern_end,
text,text_begin+breakpoint_h,text_end,
&form_1,breakpoint.component,component_end,
breakpoint.score_reverse,align_level+1);
if (wf_aligner->align_status.status != WF_STATUS_SUCCESSFUL) return;
// Set score
wf_aligner->cigar->score = wavefront_compute_classic_score(
wf_aligner,pattern_length,text_length,breakpoint.score);
}
/*
* Bidirectional Score-only
*/
void wavefront_bialign_compute_score(
wavefront_aligner_t* const wf_aligner,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length) {
// Find breakpoint in the alignment
wf_bialign_breakpoint_t breakpoint;
const int align_status = wavefront_bialign_find_breakpoint(
wf_aligner->bialigner,pattern,pattern_length,text,text_length,
wf_aligner->penalties.distance_metric,&wf_aligner->alignment_form,
affine_matrix_M,affine_matrix_M,&breakpoint,0);
// DEBUG
if (wf_aligner->system.verbose >= 2) {
wavefront_debug_epilogue(wf_aligner->bialigner->alg_forward);
wavefront_debug_epilogue(wf_aligner->bialigner->alg_reverse);
}
// Check status
if (align_status == WF_STATUS_MAX_SCORE_REACHED || align_status == WF_STATUS_UNFEASIBLE) {
wf_aligner->align_status.status = align_status;
return;
}
if (align_status == WF_STATUS_END_REACHED) {
wavefront_aligner_t* const alg_forward = wf_aligner->bialigner->alg_forward;
wavefront_aligner_t* const alg_reverse = wf_aligner->bialigner->alg_reverse;
if (alg_forward->align_status.status == WF_STATUS_END_REACHED) {
breakpoint.score = alg_forward->align_status.score;
} else {
breakpoint.score = alg_reverse->align_status.score;
}
}
// Report score
cigar_clear(wf_aligner->cigar);
wf_aligner->cigar->score = wavefront_compute_classic_score(
wf_aligner,pattern_length,text_length,breakpoint.score);
wf_aligner->align_status.status = WF_STATUS_SUCCESSFUL;
}
/*
* Bidirectional dispatcher
*/
void wavefront_bialign(
wavefront_aligner_t* const wf_aligner,
const char* const pattern,
const int pattern_length,
const char* const text,
const int text_length) {
// Init
wf_aligner->align_status.status = WF_STATUS_SUCCESSFUL; // Init OK
// Just for outputting info at plot
wf_aligner->pattern = (char*)pattern;
wf_aligner->pattern_length = pattern_length;
wf_aligner->text = (char*)text;
wf_aligner->text_length = text_length;
// Select scope
if (wf_aligner->alignment_scope == compute_score) {
wavefront_bialign_compute_score(wf_aligner,pattern,pattern_length,text,text_length);
} else {
cigar_resize(wf_aligner->cigar,2*(pattern_length+text_length));
// Bidirectional alignment
const bool min_length = MAX(pattern_length,text_length) <= WF_BIALIGN_FALLBACK_MIN_LENGTH;
wavefront_bialign_alignment(wf_aligner,
pattern,0,pattern_length,
text,0,text_length,
&wf_aligner->alignment_form,
affine_matrix_M,affine_matrix_M,
min_length ? 0 : INT_MAX,0);
}
}
|