1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
|
/*
* The MIT License
*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
* DESCRIPTION: WaveFront alignment module for computing wavefronts
*/
#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "utils/string_padded.h"
#include "alignment/affine2p_penalties.h"
#include "wavefront_compute.h"
/*
* Compute limits
*/
void wavefront_compute_limits_input(
wavefront_aligner_t* const wf_aligner,
const wavefront_set_t* const wavefront_set,
int* const lo,
int* const hi) {
// Parameters
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
const wavefront_t* const m_misms = wavefront_set->in_mwavefront_misms;
const wavefront_t* const m_open1 = wavefront_set->in_mwavefront_open1;
// Init
int min_lo = m_misms->lo;
int max_hi = m_misms->hi;
// Gap-linear
if (min_lo > m_open1->lo-1) min_lo = m_open1->lo-1;
if (max_hi < m_open1->hi+1) max_hi = m_open1->hi+1;
if (distance_metric == gap_linear) {
*lo = min_lo;
*hi = max_hi;
return;
}
// Parameters
const wavefront_t* const i1_ext = wavefront_set->in_i1wavefront_ext;
const wavefront_t* const d1_ext = wavefront_set->in_d1wavefront_ext;
// Gap-affine
if (min_lo > i1_ext->lo+1) min_lo = i1_ext->lo+1;
if (max_hi < i1_ext->hi+1) max_hi = i1_ext->hi+1;
if (min_lo > d1_ext->lo-1) min_lo = d1_ext->lo-1;
if (max_hi < d1_ext->hi-1) max_hi = d1_ext->hi-1;
if (distance_metric == gap_affine) {
*lo = min_lo;
*hi = max_hi;
return;
}
// Parameters
const wavefront_t* const m_open2 = wavefront_set->in_mwavefront_open2;
const wavefront_t* const i2_ext = wavefront_set->in_i2wavefront_ext;
const wavefront_t* const d2_ext = wavefront_set->in_d2wavefront_ext;
// Gap-affine-2p
if (min_lo > m_open2->lo-1) min_lo = m_open2->lo-1;
if (max_hi < m_open2->hi+1) max_hi = m_open2->hi+1;
if (min_lo > i2_ext->lo+1) min_lo = i2_ext->lo+1;
if (max_hi < i2_ext->hi+1) max_hi = i2_ext->hi+1;
if (min_lo > d2_ext->lo-1) min_lo = d2_ext->lo-1;
if (max_hi < d2_ext->hi-1) max_hi = d2_ext->hi-1;
*lo = min_lo;
*hi = max_hi;
}
void wavefront_compute_limits_output(
wavefront_aligner_t* const wf_aligner,
const int lo,
const int hi,
int* const effective_lo,
int* const effective_hi) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
const int max_score_scope = wf_components->max_score_scope;
// Add padding to avoid compute-kernel peeling
const int eff_lo = lo - (max_score_scope + 1);
const int eff_hi = hi + (max_score_scope + 1);
// Consider historic (to avoid errors using heuristics)
*effective_lo = MIN(eff_lo,wf_components->historic_min_lo);
*effective_hi = MAX(eff_hi,wf_components->historic_max_hi);
wf_components->historic_min_lo = *effective_lo;
wf_components->historic_max_hi = *effective_hi;
}
/*
* Score translation
*/
int wavefront_compute_classic_score(
wavefront_aligner_t* const wf_aligner,
const int pattern_length,
const int text_length,
const int wf_score) {
// Parameters
const int swg_match = -(wf_aligner->penalties.match);
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
// Adapt score
if (distance_metric <= edit) return wf_score;
if (swg_match == 0) return -wf_score;
return WF_SCORE_TO_SW_SCORE(swg_match,pattern_length,text_length,wf_score);
}
/*
* Compute ends-free init conditions
*/
bool wavefront_compute_endsfree_required(
wavefront_aligner_t* const wf_aligner,
const int score) {
// Parameters
alignment_form_t* const alg_form = &wf_aligner->alignment_form;
wavefront_penalties_t* const penalties = &wf_aligner->penalties;
// Return is ends-free initialization is required
if (penalties->match == 0) return false;
if (alg_form->span != alignment_endsfree) return false;
if (score % (-penalties->match) != 0) return false;
// Ok
return true;
}
void wavefront_compute_endsfree_limits(
wavefront_aligner_t* const wf_aligner,
const int score,
int* const lo,
int* const hi) {
// Parameters
alignment_form_t* const alg_form = &wf_aligner->alignment_form;
wavefront_penalties_t* const penalties = &wf_aligner->penalties;
// Consider ends-free conditions
const int endsfree_k = score/(-penalties->match);
*hi = (alg_form->text_begin_free >= endsfree_k) ? endsfree_k : INT_MIN;
*lo = (alg_form->pattern_begin_free >= endsfree_k) ? -endsfree_k : INT_MAX;
}
void wavefront_compute_endsfree_init_offset(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const int k,
const int v,
const int h) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
wf_offset_t* const offsets = wavefront->offsets;
// Set offset
offsets[k] = DPMATRIX_OFFSET(h,v);
if (wf_components->bt_piggyback) {
wavefront->bt_pcigar[k] = 0;
wavefront->bt_prev[k] =
wf_backtrace_buffer_init_block(wf_components->bt_buffer,v,h);
}
}
void wavefront_compute_endsfree_init(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const int score) {
// Parameters
alignment_form_t* const alg_form = &wf_aligner->alignment_form;
wavefront_penalties_t* const penalties = &wf_aligner->penalties;
const int lo = wavefront->lo;
const int hi = wavefront->hi;
// Consider ends-free conditions
int endsfree_k = score/(-penalties->match);
wf_offset_t* const offsets = wavefront->offsets;
// Consider text begin-free
int k;
if (alg_form->text_begin_free >= endsfree_k) {
if (hi >= endsfree_k) {
if (offsets[endsfree_k] <= DPMATRIX_OFFSET(endsfree_k,0)) {
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,endsfree_k,0,endsfree_k);
}
} else {
for (k=hi+1;k<endsfree_k;++k) {
offsets[k] = WAVEFRONT_OFFSET_NULL;
}
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,endsfree_k,0,endsfree_k);
wavefront->hi = endsfree_k;
}
}
// Consider pattern begin-free
if (alg_form->pattern_begin_free >= endsfree_k) {
endsfree_k = -endsfree_k;
if (lo <= endsfree_k) {
if (offsets[endsfree_k] <= DPMATRIX_OFFSET(0,endsfree_k)) {
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,endsfree_k,-endsfree_k,0);
}
} else {
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,endsfree_k,-endsfree_k,0);
for (k=endsfree_k+1;k<lo;k++) {
offsets[k] = WAVEFRONT_OFFSET_NULL;
}
wavefront->lo = endsfree_k;
}
}
}
wavefront_t* wavefront_compute_endsfree_allocate_null(
wavefront_aligner_t* const wf_aligner,
const int score) {
// Parameters
wavefront_slab_t* const wavefront_slab = wf_aligner->wavefront_slab;
alignment_form_t* const alg_form = &wf_aligner->alignment_form;
wavefront_penalties_t* const penalties = &wf_aligner->penalties;
// Consider ends-free conditions
const int endsfree_k = score/(-penalties->match);
const bool text_begin_free = (alg_form->text_begin_free >= endsfree_k);
const bool pattern_begin_free = (alg_form->pattern_begin_free >= endsfree_k);
int lo = 0, hi = 0;
if (text_begin_free && pattern_begin_free) {
lo = -endsfree_k;
hi = endsfree_k;
} else if (text_begin_free) {
lo = endsfree_k;
hi = endsfree_k;
} else if (pattern_begin_free) {
lo = -endsfree_k;
hi = -endsfree_k;
}
// Compute effective hi/lo dimensions
int effective_lo, effective_hi;
wavefront_compute_limits_output(wf_aligner,lo,hi,&effective_lo,&effective_hi);
// Allocate & initialize
wavefront_t* const wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_offset_t* const offsets = wavefront->offsets;
int k;
for (k=lo+1;k<hi;k++) {
offsets[k] = WAVEFRONT_OFFSET_NULL;
}
if (text_begin_free) {
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,endsfree_k,0,endsfree_k);
}
if (pattern_begin_free) {
wavefront_compute_endsfree_init_offset(wf_aligner,wavefront,-endsfree_k,endsfree_k,0);
}
wavefront->lo = lo;
wavefront->hi = hi;
// Return
return wavefront;
}
/*
* Input wavefronts (fetch)
*/
wavefront_t* wavefront_compute_get_mwavefront(
wavefront_components_t* const wf_components,
const int score_mod) {
return (score_mod < 0 ||
wf_components->mwavefronts[score_mod] == NULL ||
wf_components->mwavefronts[score_mod]->null) ?
wf_components->wavefront_null : wf_components->mwavefronts[score_mod];
}
wavefront_t* wavefront_compute_get_i1wavefront(
wavefront_components_t* const wf_components,
const int score_mod) {
return (score_mod < 0 ||
wf_components->i1wavefronts[score_mod] == NULL ||
wf_components->i1wavefronts[score_mod]->null) ?
wf_components->wavefront_null : wf_components->i1wavefronts[score_mod];
}
wavefront_t* wavefront_compute_get_i2wavefront(
wavefront_components_t* const wf_components,
const int score_mod) {
return (score_mod < 0 ||
wf_components->i2wavefronts[score_mod] == NULL ||
wf_components->i2wavefronts[score_mod]->null) ?
wf_components->wavefront_null : wf_components->i2wavefronts[score_mod];
}
wavefront_t* wavefront_compute_get_d1wavefront(
wavefront_components_t* const wf_components,
const int score_mod) {
return (score_mod < 0 ||
wf_components->d1wavefronts[score_mod] == NULL ||
wf_components->d1wavefronts[score_mod]->null) ?
wf_components->wavefront_null : wf_components->d1wavefronts[score_mod];
}
wavefront_t* wavefront_compute_get_d2wavefront(
wavefront_components_t* const wf_components,
const int score_mod) {
return (score_mod < 0 ||
wf_components->d2wavefronts[score_mod] == NULL ||
wf_components->d2wavefronts[score_mod]->null) ?
wf_components->wavefront_null : wf_components->d2wavefronts[score_mod];
}
void wavefront_compute_fetch_input(
wavefront_aligner_t* const wf_aligner,
wavefront_set_t* const wavefront_set,
const int score) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
// Compute scores
const wavefront_penalties_t* const penalties = &(wf_aligner->penalties);
if (distance_metric == gap_linear) {
int mismatch = score - penalties->mismatch;
int gap_open1 = score - penalties->gap_opening1;
// Modular wavefront
if (wf_components->memory_modular) {
const int max_score_scope = wf_components->max_score_scope;
if (mismatch > 0) mismatch = mismatch % max_score_scope;
if (gap_open1 > 0) gap_open1 = gap_open1 % max_score_scope;
}
// Fetch wavefronts
wavefront_set->in_mwavefront_misms = wavefront_compute_get_mwavefront(wf_components,mismatch);
wavefront_set->in_mwavefront_open1 = wavefront_compute_get_mwavefront(wf_components,gap_open1);
} else { // distance_metric == gap_affine || distance_metric == gap_affine_2p
int mismatch = score - penalties->mismatch;
int gap_open1 = score - penalties->gap_opening1 - penalties->gap_extension1;
int gap_extend1 = score - penalties->gap_extension1;
int gap_open2 = score - penalties->gap_opening2 - penalties->gap_extension2;
int gap_extend2 = score - penalties->gap_extension2;
// Modular wavefront
if (wf_components->memory_modular) {
const int max_score_scope = wf_components->max_score_scope;
if (mismatch > 0) mismatch = mismatch % max_score_scope;
if (gap_open1 > 0) gap_open1 = gap_open1 % max_score_scope;
if (gap_extend1 > 0) gap_extend1 = gap_extend1 % max_score_scope;
if (gap_open2 > 0) gap_open2 = gap_open2 % max_score_scope;
if (gap_extend2 > 0) gap_extend2 = gap_extend2 % max_score_scope;
}
// Fetch wavefronts
wavefront_set->in_mwavefront_misms = wavefront_compute_get_mwavefront(wf_components,mismatch);
wavefront_set->in_mwavefront_open1 = wavefront_compute_get_mwavefront(wf_components,gap_open1);
wavefront_set->in_i1wavefront_ext = wavefront_compute_get_i1wavefront(wf_components,gap_extend1);
wavefront_set->in_d1wavefront_ext = wavefront_compute_get_d1wavefront(wf_components,gap_extend1);
if (distance_metric == gap_affine) return;
wavefront_set->in_mwavefront_open2 = wavefront_compute_get_mwavefront(wf_components,gap_open2);
wavefront_set->in_i2wavefront_ext = wavefront_compute_get_i2wavefront(wf_components,gap_extend2);
wavefront_set->in_d2wavefront_ext = wavefront_compute_get_d2wavefront(wf_components,gap_extend2);
}
}
/*
* Output wavefronts (allocate)
*/
void wavefront_compute_free_output(
wavefront_aligner_t* const wf_aligner,
const int score_mod) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
wavefront_slab_t* const wavefront_slab = wf_aligner->wavefront_slab;
// Free
if (wf_components->mwavefronts[score_mod]) {
wavefront_slab_free(wavefront_slab,wf_components->mwavefronts[score_mod]);
}
if (distance_metric == gap_linear) return;
if (wf_components->i1wavefronts[score_mod]) {
wavefront_slab_free(wavefront_slab,wf_components->i1wavefronts[score_mod]);
}
if (wf_components->d1wavefronts[score_mod]) {
wavefront_slab_free(wavefront_slab,wf_components->d1wavefronts[score_mod]);
}
if (distance_metric == gap_affine) return;
if (wf_components->i2wavefronts[score_mod]) {
wavefront_slab_free(wavefront_slab,wf_components->i2wavefronts[score_mod]);
}
if (wf_components->d2wavefronts[score_mod]) {
wavefront_slab_free(wavefront_slab,wf_components->d2wavefronts[score_mod]);
}
}
void wavefront_compute_allocate_output_null(
wavefront_aligner_t* const wf_aligner,
const int score) {
// Parameters
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
// Modular wavefront
int score_mod = score;
if (wf_components->memory_modular) {
score_mod = score % wf_components->max_score_scope;
wavefront_compute_free_output(wf_aligner,score_mod);
}
// Consider ends-free (M!=0)
if (wavefront_compute_endsfree_required(wf_aligner,score)) {
wf_components->mwavefronts[score_mod] =
wavefront_compute_endsfree_allocate_null(wf_aligner,score);
} else {
wf_components->mwavefronts[score_mod] = NULL;
}
// Nullify Wavefronts
if (distance_metric == gap_linear) return;
wf_components->i1wavefronts[score_mod] = NULL;
wf_components->d1wavefronts[score_mod] = NULL;
if (distance_metric == gap_affine) return;
wf_components->i2wavefronts[score_mod] = NULL;
wf_components->d2wavefronts[score_mod] = NULL;
}
void wavefront_compute_allocate_output(
wavefront_aligner_t* const wf_aligner,
wavefront_set_t* const wavefront_set,
const int score,
const int lo,
const int hi) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
wavefront_slab_t* const wavefront_slab = wf_aligner->wavefront_slab;
// Consider ends-free (M!=0)
int effective_lo, effective_hi;
if (wavefront_compute_endsfree_required(wf_aligner,score)) {
int endsfree_lo, endsfree_hi;
wavefront_compute_endsfree_limits(wf_aligner,score,&endsfree_lo,&endsfree_hi);
effective_lo = MIN(lo,endsfree_lo);
effective_hi = MAX(hi,endsfree_hi);
} else {
effective_lo = lo;
effective_hi = hi;
}
// Compute effective hi/lo dimensions
wavefront_compute_limits_output(
wf_aligner,effective_lo,effective_hi,
&effective_lo,&effective_hi);
// Resize null/victim wavefronts
wavefront_components_resize_null__victim(wf_components,effective_lo,effective_hi);
// Modular wavefront
int score_mod = score;
if (wf_components->memory_modular) {
score_mod = score % wf_components->max_score_scope;
wavefront_compute_free_output(wf_aligner,score_mod);
}
// Check
if (score_mod >= wf_components->num_wavefronts) {
fprintf(stderr,"[WFA::Compute] Maximum allocated wavefronts reached\n");
exit(1);
}
// Allocate M-Wavefront
wavefront_set->out_mwavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_components->mwavefronts[score_mod] = wavefront_set->out_mwavefront;
wf_components->mwavefronts[score_mod]->lo = lo;
wf_components->mwavefronts[score_mod]->hi = hi;
if (distance_metric == gap_linear) return;
// Allocate I1-Wavefront
if (!wavefront_set->in_mwavefront_open1->null || !wavefront_set->in_i1wavefront_ext->null) {
wavefront_set->out_i1wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_components->i1wavefronts[score_mod] = wavefront_set->out_i1wavefront;
wf_components->i1wavefronts[score_mod]->lo = lo;
wf_components->i1wavefronts[score_mod]->hi = hi;
} else {
wavefront_set->out_i1wavefront = wf_components->wavefront_victim;
wf_components->i1wavefronts[score_mod] = NULL;
}
// Allocate D1-Wavefront
if (!wavefront_set->in_mwavefront_open1->null || !wavefront_set->in_d1wavefront_ext->null) {
wavefront_set->out_d1wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_components->d1wavefronts[score_mod] = wavefront_set->out_d1wavefront;
wf_components->d1wavefronts[score_mod]->lo = lo;
wf_components->d1wavefronts[score_mod]->hi = hi;
} else {
wavefront_set->out_d1wavefront = wf_components->wavefront_victim;
wf_components->d1wavefronts[score_mod] = NULL;
}
if (distance_metric == gap_affine) return;
// Allocate I2-Wavefront
if (!wavefront_set->in_mwavefront_open2->null || !wavefront_set->in_i2wavefront_ext->null) {
wavefront_set->out_i2wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_components->i2wavefronts[score_mod] = wavefront_set->out_i2wavefront;
wf_components->i2wavefronts[score_mod]->lo = lo;
wf_components->i2wavefronts[score_mod]->hi = hi;
} else {
wavefront_set->out_i2wavefront = wf_components->wavefront_victim;
wf_components->i2wavefronts[score_mod] = NULL;
}
// Allocate D2-Wavefront
if (!wavefront_set->in_mwavefront_open2->null || !wavefront_set->in_d2wavefront_ext->null) {
wavefront_set->out_d2wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
wf_components->d2wavefronts[score_mod] = wavefront_set->out_d2wavefront;
wf_components->d2wavefronts[score_mod]->lo = lo;
wf_components->d2wavefronts[score_mod]->hi = hi;
} else {
wavefront_set->out_d2wavefront = wf_components->wavefront_victim;
wf_components->d2wavefronts[score_mod] = NULL;
}
}
/*
* Initialize wavefronts ends
*/
void wavefront_compute_init_ends_wf_lower(
wavefront_t* const wavefront,
const int min_lo) {
// Check initialization (lowest element)
if (wavefront->wf_elements_init_min <= min_lo) return;
// Initialize lower elements
wf_offset_t* const offsets = wavefront->offsets;
const int min_init = MIN(wavefront->wf_elements_init_min,wavefront->lo);
int k;
for (k=min_lo;k<min_init;++k) {
offsets[k] = WAVEFRONT_OFFSET_NULL;
}
// Set new minimum
wavefront->wf_elements_init_min = min_lo;
}
void wavefront_compute_init_ends_wf_higher(
wavefront_t* const wavefront,
const int max_hi) {
// Check initialization (highest element)
if (wavefront->wf_elements_init_max >= max_hi) return;
// Initialize lower elements
wf_offset_t* const offsets = wavefront->offsets;
const int max_init = MAX(wavefront->wf_elements_init_max,wavefront->hi);
int k;
for (k=max_init+1;k<=max_hi;++k) {
offsets[k] = WAVEFRONT_OFFSET_NULL;
}
// Set new maximum
wavefront->wf_elements_init_max = max_hi;
}
void wavefront_compute_init_ends(
wavefront_aligner_t* const wf_aligner,
wavefront_set_t* const wavefront_set,
const int lo,
const int hi) {
// Parameters
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
// Init missing elements, instead of loop peeling (M)
const bool m_misms_null = wavefront_set->in_mwavefront_misms->null;
const bool m_gap1_null = wavefront_set->in_mwavefront_open1->null;
if (!m_misms_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_mwavefront_misms,hi);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_mwavefront_misms,lo);
}
if (!m_gap1_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_mwavefront_open1,hi+1);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_mwavefront_open1,lo-1);
}
if (distance_metric == gap_linear) return;
// Init missing elements, instead of loop peeling (Open1/I1/D1)
const bool i1_ext_null = wavefront_set->in_i1wavefront_ext->null;
const bool d1_ext_null = wavefront_set->in_d1wavefront_ext->null;
if (!i1_ext_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_i1wavefront_ext,hi);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_i1wavefront_ext,lo-1);
}
if (!d1_ext_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_d1wavefront_ext,hi+1);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_d1wavefront_ext,lo);
}
if (distance_metric == gap_affine) return;
// Init missing elements, instead of loop peeling (Open2/I2/D2)
const bool m_gap2_null = wavefront_set->in_mwavefront_open2->null;
const bool i2_ext_null = wavefront_set->in_i2wavefront_ext->null;
const bool d2_ext_null = wavefront_set->in_d2wavefront_ext->null;
if (!m_gap2_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_mwavefront_open2,hi+1);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_mwavefront_open2,lo-1);
}
if (!i2_ext_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_i2wavefront_ext,hi);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_i2wavefront_ext,lo-1);
}
if (!d2_ext_null) {
wavefront_compute_init_ends_wf_higher(wavefront_set->in_d2wavefront_ext,hi+1);
wavefront_compute_init_ends_wf_lower(wavefront_set->in_d2wavefront_ext,lo);
}
}
/*
* Trim wavefronts ends
*/
void wavefront_compute_trim_ends(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront) {
// Parameters
const int pattern_length = wf_aligner->pattern_length;
const int text_length = wf_aligner->text_length;
wf_offset_t* const offsets = wavefront->offsets;
// Trim from hi
int k;
const int lo = wavefront->lo;
for (k=wavefront->hi;k>=lo;--k) {
// Fetch offset
const wf_offset_t offset = offsets[k];
// Check boundaries
const uint32_t h = WAVEFRONT_H(k,offset); // Make unsigned to avoid checking negative
const uint32_t v = WAVEFRONT_V(k,offset); // Make unsigned to avoid checking negative
if (h <= text_length && v <= pattern_length) break;
}
wavefront->hi = k; // Set new hi
wavefront->wf_elements_init_max = k;
// Trim from lo
const int hi = wavefront->hi;
for (k=wavefront->lo;k<=hi;++k) {
// Fetch offset
const wf_offset_t offset = offsets[k];
// Check boundaries
const uint32_t h = WAVEFRONT_H(k,offset); // Make unsigned to avoid checking negative
const uint32_t v = WAVEFRONT_V(k,offset); // Make unsigned to avoid checking negative
if (h <= text_length && v <= pattern_length) break;
}
wavefront->lo = k; // Set new lo
wavefront->wf_elements_init_min = k;
wavefront->null = (wavefront->lo > wavefront->hi);
}
void wavefront_compute_process_ends(
wavefront_aligner_t* const wf_aligner,
wavefront_set_t* const wavefront_set,
const int score) {
// Parameters
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
// Consider ends-free (M!=0)
if (wavefront_compute_endsfree_required(wf_aligner,score)) {
wavefront_compute_endsfree_init(wf_aligner,wavefront_set->out_mwavefront,score);
}
// Trim ends from non-null WFs
if (wavefront_set->out_mwavefront) wavefront_compute_trim_ends(wf_aligner,wavefront_set->out_mwavefront);
if (distance_metric == gap_linear) return;
if (wavefront_set->out_i1wavefront) wavefront_compute_trim_ends(wf_aligner,wavefront_set->out_i1wavefront);
if (wavefront_set->out_d1wavefront) wavefront_compute_trim_ends(wf_aligner,wavefront_set->out_d1wavefront);
if (distance_metric == gap_affine) return;
if (wavefront_set->out_i2wavefront) wavefront_compute_trim_ends(wf_aligner,wavefront_set->out_i2wavefront);
if (wavefront_set->out_d2wavefront) wavefront_compute_trim_ends(wf_aligner,wavefront_set->out_d2wavefront);
}
/*
* Multithread dispatcher
*/
#ifdef WFA_PARALLEL
int wavefront_compute_num_threads(
wavefront_aligner_t* const wf_aligner,
const int lo,
const int hi) {
// Parameters
const int max_num_threads = wf_aligner->system.max_num_threads;
if (max_num_threads == 1) return 1;
const int min_offsets_per_thread = wf_aligner->system.min_offsets_per_thread;
// Compute minimum work-chunks worth spawning threads
const int num_chunks = WAVEFRONT_LENGTH(lo,hi)/min_offsets_per_thread;
const int max_workers = MIN(num_chunks,max_num_threads);
return MAX(max_workers,1);
}
void wavefront_compute_thread_limits(
const int thread_id,
const int num_theads,
const int lo,
const int hi,
int* const thread_lo,
int* const thread_hi) {
const int chunk_size = WAVEFRONT_LENGTH(lo,hi)/num_theads;
const int t_lo = lo + thread_id*chunk_size;
const int t_hi = (thread_id+1 == num_theads) ? hi : t_lo + chunk_size - 1;
*thread_lo = t_lo;
*thread_hi = t_hi;
}
#endif
|