1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/*
* The MIT License
*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
* DESCRIPTION: WaveFront alignment module for computing wavefronts (gap-affine)
*/
#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "utils/string_padded.h"
#include "wavefront_compute.h"
#include "wavefront_backtrace_offload.h"
#ifdef WFA_PARALLEL
#include <omp.h>
#endif
/*
* Compute Kernels
*/
void wavefront_compute_affine_idm(
wavefront_aligner_t* const wf_aligner,
const wavefront_set_t* const wavefront_set,
const int lo,
const int hi) {
// Parameters
const int pattern_length = wf_aligner->pattern_length;
const int text_length = wf_aligner->text_length;
// In Offsets
const wf_offset_t* const m_misms = wavefront_set->in_mwavefront_misms->offsets;
const wf_offset_t* const m_open1 = wavefront_set->in_mwavefront_open1->offsets;
const wf_offset_t* const i1_ext = wavefront_set->in_i1wavefront_ext->offsets;
const wf_offset_t* const d1_ext = wavefront_set->in_d1wavefront_ext->offsets;
// Out Offsets
wf_offset_t* const out_m = wavefront_set->out_mwavefront->offsets;
wf_offset_t* const out_i1 = wavefront_set->out_i1wavefront->offsets;
wf_offset_t* const out_d1 = wavefront_set->out_d1wavefront->offsets;
// Compute-Next kernel loop
int k;
PRAGMA_LOOP_VECTORIZE
for (k=lo;k<=hi;++k) {
// Update I1
const wf_offset_t ins1_o = m_open1[k-1];
const wf_offset_t ins1_e = i1_ext[k-1];
const wf_offset_t ins1 = MAX(ins1_o,ins1_e) + 1;
out_i1[k] = ins1;
// Update D1
const wf_offset_t del1_o = m_open1[k+1];
const wf_offset_t del1_e = d1_ext[k+1];
const wf_offset_t del1 = MAX(del1_o,del1_e);
out_d1[k] = del1;
// Update M
const wf_offset_t misms = m_misms[k] + 1;
wf_offset_t max = MAX(del1,MAX(misms,ins1));
// Adjust offset out of boundaries !(h>tlen,v>plen) (here to allow vectorization)
const wf_unsigned_offset_t h = WAVEFRONT_H(k,max); // Make unsigned to avoid checking negative
const wf_unsigned_offset_t v = WAVEFRONT_V(k,max); // Make unsigned to avoid checking negative
if (h > text_length) max = WAVEFRONT_OFFSET_NULL;
if (v > pattern_length) max = WAVEFRONT_OFFSET_NULL;
out_m[k] = max;
}
}
/*
* Compute Kernel (Piggyback)
*/
void wavefront_compute_affine_idm_piggyback(
wavefront_aligner_t* const wf_aligner,
const wavefront_set_t* const wavefront_set,
const int lo,
const int hi) {
// Parameters
const int pattern_length = wf_aligner->pattern_length;
const int text_length = wf_aligner->text_length;
// In Offsets
const wf_offset_t* const m_misms = wavefront_set->in_mwavefront_misms->offsets;
const wf_offset_t* const m_open1 = wavefront_set->in_mwavefront_open1->offsets;
const wf_offset_t* const i1_ext = wavefront_set->in_i1wavefront_ext->offsets;
const wf_offset_t* const d1_ext = wavefront_set->in_d1wavefront_ext->offsets;
// Out Offsets
wf_offset_t* const out_m = wavefront_set->out_mwavefront->offsets;
wf_offset_t* const out_i1 = wavefront_set->out_i1wavefront->offsets;
wf_offset_t* const out_d1 = wavefront_set->out_d1wavefront->offsets;
// In BT-pcigar
const pcigar_t* const m_misms_bt_pcigar = wavefront_set->in_mwavefront_misms->bt_pcigar;
const pcigar_t* const m_open1_bt_pcigar = wavefront_set->in_mwavefront_open1->bt_pcigar;
const pcigar_t* const i1_ext_bt_pcigar = wavefront_set->in_i1wavefront_ext->bt_pcigar;
const pcigar_t* const d1_ext_bt_pcigar = wavefront_set->in_d1wavefront_ext->bt_pcigar;
// In BT-prev
const bt_block_idx_t* const m_misms_bt_prev = wavefront_set->in_mwavefront_misms->bt_prev;
const bt_block_idx_t* const m_open1_bt_prev = wavefront_set->in_mwavefront_open1->bt_prev;
const bt_block_idx_t* const i1_ext_bt_prev = wavefront_set->in_i1wavefront_ext->bt_prev;
const bt_block_idx_t* const d1_ext_bt_prev = wavefront_set->in_d1wavefront_ext->bt_prev;
// Out BT-pcigar
pcigar_t* const out_m_bt_pcigar = wavefront_set->out_mwavefront->bt_pcigar;
pcigar_t* const out_i1_bt_pcigar = wavefront_set->out_i1wavefront->bt_pcigar;
pcigar_t* const out_d1_bt_pcigar = wavefront_set->out_d1wavefront->bt_pcigar;
// Out BT-prev
bt_block_idx_t* const out_m_bt_prev = wavefront_set->out_mwavefront->bt_prev;
bt_block_idx_t* const out_i1_bt_prev = wavefront_set->out_i1wavefront->bt_prev;
bt_block_idx_t* const out_d1_bt_prev = wavefront_set->out_d1wavefront->bt_prev;
// Compute-Next kernel loop
int k;
PRAGMA_LOOP_VECTORIZE // Ifs predicated by the compiler
for (k=lo;k<=hi;++k) {
// Update I1
const wf_offset_t ins1_o = m_open1[k-1];
const wf_offset_t ins1_e = i1_ext[k-1];
wf_offset_t ins1;
pcigar_t ins1_pcigar;
bt_block_idx_t ins1_block_idx;
if (ins1_e >= ins1_o) {
ins1 = ins1_e;
ins1_pcigar = i1_ext_bt_pcigar[k-1];
ins1_block_idx = i1_ext_bt_prev[k-1];
} else {
ins1 = ins1_o;
ins1_pcigar = m_open1_bt_pcigar[k-1];
ins1_block_idx = m_open1_bt_prev[k-1];
}
out_i1_bt_pcigar[k] = PCIGAR_PUSH_BACK_INS(ins1_pcigar);
out_i1_bt_prev[k] = ins1_block_idx;
out_i1[k] = ++ins1;
// Update D1
const wf_offset_t del1_o = m_open1[k+1];
const wf_offset_t del1_e = d1_ext[k+1];
wf_offset_t del1;
pcigar_t del1_pcigar;
bt_block_idx_t del1_block_idx;
if (del1_e >= del1_o) {
del1 = del1_e;
del1_pcigar = d1_ext_bt_pcigar[k+1];
del1_block_idx = d1_ext_bt_prev[k+1];
} else {
del1 = del1_o;
del1_pcigar = m_open1_bt_pcigar[k+1];
del1_block_idx = m_open1_bt_prev[k+1];
}
out_d1_bt_pcigar[k] = PCIGAR_PUSH_BACK_DEL(del1_pcigar);
out_d1_bt_prev[k] = del1_block_idx;
out_d1[k] = del1;
// Update M
const wf_offset_t misms = m_misms[k] + 1;
wf_offset_t max = MAX(del1,MAX(misms,ins1));
if (max == ins1) {
out_m_bt_pcigar[k] = out_i1_bt_pcigar[k];
out_m_bt_prev[k] = out_i1_bt_prev[k];
}
if (max == del1) {
out_m_bt_pcigar[k] = out_d1_bt_pcigar[k];
out_m_bt_prev[k] = out_d1_bt_prev[k];
}
if (max == misms) {
out_m_bt_pcigar[k] = m_misms_bt_pcigar[k];
out_m_bt_prev[k] = m_misms_bt_prev[k];
}
// Coming from I/D -> X is fake to represent gap-close
// Coming from M -> X is real to represent mismatch
out_m_bt_pcigar[k] = PCIGAR_PUSH_BACK_MISMS(out_m_bt_pcigar[k]);
// Adjust offset out of boundaries !(h>tlen,v>plen) (here to allow vectorization)
const wf_unsigned_offset_t h = WAVEFRONT_H(k,max); // Make unsigned to avoid checking negative
const wf_unsigned_offset_t v = WAVEFRONT_V(k,max); // Make unsigned to avoid checking negative
if (h > text_length) max = WAVEFRONT_OFFSET_NULL;
if (v > pattern_length) max = WAVEFRONT_OFFSET_NULL;
out_m[k] = max;
}
}
/*
* Compute Wavefronts (gap-affine)
*/
void wavefront_compute_affine_dispatcher(
wavefront_aligner_t* const wf_aligner,
wavefront_set_t* const wavefront_set,
const int lo,
const int hi) {
// Parameters
const bool bt_piggyback = wf_aligner->wf_components.bt_piggyback;
const int num_threads = wavefront_compute_num_threads(wf_aligner,lo,hi);
// Multithreading dispatcher
if (num_threads == 1) {
// Compute next wavefront
if (bt_piggyback) {
wavefront_compute_affine_idm_piggyback(wf_aligner,wavefront_set,lo,hi);
} else {
wavefront_compute_affine_idm(wf_aligner,wavefront_set,lo,hi);
}
} else {
#ifdef WFA_PARALLEL
// Compute next wavefront in parallel
#pragma omp parallel num_threads(num_threads)
{
int t_lo, t_hi;
const int thread_id = omp_get_thread_num();
const int thread_num = omp_get_num_threads();
wavefront_compute_thread_limits(thread_id,thread_num,lo,hi,&t_lo,&t_hi);
if (bt_piggyback) {
wavefront_compute_affine_idm_piggyback(wf_aligner,wavefront_set,t_lo,t_hi);
} else {
wavefront_compute_affine_idm(wf_aligner,wavefront_set,t_lo,t_hi);
}
}
#endif
}
}
void wavefront_compute_affine(
wavefront_aligner_t* const wf_aligner,
const int score) {
// Select wavefronts
wavefront_set_t wavefront_set;
wavefront_compute_fetch_input(wf_aligner,&wavefront_set,score);
// Check null wavefronts
if (wavefront_set.in_mwavefront_misms->null &&
wavefront_set.in_mwavefront_open1->null &&
wavefront_set.in_i1wavefront_ext->null &&
wavefront_set.in_d1wavefront_ext->null) {
wf_aligner->align_status.num_null_steps++; // Increment null-steps
wavefront_compute_allocate_output_null(wf_aligner,score); // Null s-wavefront
return;
}
wf_aligner->align_status.num_null_steps = 0;
// Set limits
int hi, lo;
wavefront_compute_limits_input(wf_aligner,&wavefront_set,&lo,&hi);
// Allocate wavefronts
wavefront_compute_allocate_output(wf_aligner,&wavefront_set,score,lo,hi);
// Init wavefront ends
wavefront_compute_init_ends(wf_aligner,&wavefront_set,lo,hi);
// Compute wavefronts
wavefront_compute_affine_dispatcher(wf_aligner,&wavefront_set,lo,hi);
// Offload backtrace (if necessary)
if (wf_aligner->wf_components.bt_piggyback) {
wavefront_backtrace_offload_affine(wf_aligner,&wavefront_set,lo,hi);
}
// Process wavefront ends
wavefront_compute_process_ends(wf_aligner,&wavefront_set,score);
}
|