File: wavefront_compute_linear.c

package info (click to toggle)
libwfa2 2.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,072 kB
  • sloc: ansic: 13,812; python: 540; cpp: 500; makefile: 268; sh: 176; lisp: 41
file content (194 lines) | stat: -rw-r--r-- 7,760 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 *                             The MIT License
 *
 * Wavefront Alignment Algorithms
 * Copyright (c) 2017 by Santiago Marco-Sola  <santiagomsola@gmail.com>
 *
 * This file is part of Wavefront Alignment Algorithms.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * PROJECT: Wavefront Alignment Algorithms
 * AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
 * DESCRIPTION: WaveFront alignment module for computing wavefronts (gap-linear)
 */

#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "utils/string_padded.h"
#include "wavefront_compute.h"
#include "wavefront_backtrace_offload.h"

#ifdef WFA_PARALLEL
#include <omp.h>
#endif

/*
 * Compute Kernels
 */
void wavefront_compute_linear_idm(
    wavefront_aligner_t* const wf_aligner,
    const wavefront_set_t* const wavefront_set,
    const int lo,
    const int hi) {
  // Parameters
  const int pattern_length = wf_aligner->pattern_length;
  const int text_length = wf_aligner->text_length;
  // In Offsets
  const wf_offset_t* const m_misms = wavefront_set->in_mwavefront_misms->offsets;
  const wf_offset_t* const m_open1 = wavefront_set->in_mwavefront_open1->offsets;
  // Out Offsets
  wf_offset_t* const out_m = wavefront_set->out_mwavefront->offsets;
  // Compute-Next kernel loop
  int k;
  PRAGMA_LOOP_VECTORIZE
  for (k=lo;k<=hi;++k) {
    // Compute maximum Offset
    const wf_offset_t ins1 = m_open1[k-1];
    const wf_offset_t del1 = m_open1[k+1];
    const wf_offset_t misms = m_misms[k];
    wf_offset_t max = MAX(del1,MAX(misms,ins1)+1);
    // Adjust offset out of boundaries !(h>tlen,v>plen) (here to allow vectorization)
    const wf_unsigned_offset_t h = WAVEFRONT_H(k,max); // Make unsigned to avoid checking negative
    const wf_unsigned_offset_t v = WAVEFRONT_V(k,max); // Make unsigned to avoid checking negative
    if (h > text_length) max = WAVEFRONT_OFFSET_NULL;
    if (v > pattern_length) max = WAVEFRONT_OFFSET_NULL;
    out_m[k] = max;
  }
}
/*
 * Compute Kernel (Piggyback)
 */
void wavefront_compute_linear_idm_piggyback(
    wavefront_aligner_t* const wf_aligner,
    const wavefront_set_t* const wavefront_set,
    const int lo,
    const int hi) {
  // Parameters
  const int pattern_length = wf_aligner->pattern_length;
  const int text_length = wf_aligner->text_length;
  // In M
  const wf_offset_t* const m_misms = wavefront_set->in_mwavefront_misms->offsets;
  const pcigar_t* const m_misms_bt_pcigar = wavefront_set->in_mwavefront_misms->bt_pcigar;
  const bt_block_idx_t* const m_misms_bt_prev = wavefront_set->in_mwavefront_misms->bt_prev;
  // In I/D
  const wf_offset_t* const m_open1 = wavefront_set->in_mwavefront_open1->offsets;
  const pcigar_t* const m_open1_bt_pcigar = wavefront_set->in_mwavefront_open1->bt_pcigar;
  const bt_block_idx_t* const m_open1_bt_prev = wavefront_set->in_mwavefront_open1->bt_prev;
  // Out
  wf_offset_t* const out_m = wavefront_set->out_mwavefront->offsets;
  pcigar_t* const out_m_bt_pcigar = wavefront_set->out_mwavefront->bt_pcigar;
  bt_block_idx_t* const out_m_bt_prev = wavefront_set->out_mwavefront->bt_prev;
  // Compute-Next kernel loop
  int k;
  PRAGMA_LOOP_VECTORIZE // Ifs predicated by the compiler
  for (k=lo;k<=hi;++k) {
    // Compute maximum Offset
    const wf_offset_t ins1 = m_open1[k-1] + 1;
    const wf_offset_t del1 = m_open1[k+1];
    const wf_offset_t misms = m_misms[k] + 1;
    wf_offset_t max = MAX(del1,MAX(misms,ins1));
    // Update pcigar & bt-block
    if (max == ins1) {
      out_m_bt_pcigar[k] = PCIGAR_PUSH_BACK_INS(m_open1_bt_pcigar[k-1]);
      out_m_bt_prev[k] = m_open1_bt_prev[k-1];
    }
    if (max == del1) {
      out_m_bt_pcigar[k] = PCIGAR_PUSH_BACK_DEL(m_open1_bt_pcigar[k+1]);
      out_m_bt_prev[k] = m_open1_bt_prev[k+1];
    }
    if (max == misms) {
      out_m_bt_pcigar[k] = PCIGAR_PUSH_BACK_MISMS(m_misms_bt_pcigar[k]);
      out_m_bt_prev[k] = m_misms_bt_prev[k];
    }
    // Adjust offset out of boundaries !(h>tlen,v>plen) (here to allow vectorization)
    const wf_unsigned_offset_t h = WAVEFRONT_H(k,max); // Make unsigned to avoid checking negative
    const wf_unsigned_offset_t v = WAVEFRONT_V(k,max); // Make unsigned to avoid checking negative
    if (h > text_length) max = WAVEFRONT_OFFSET_NULL;
    if (v > pattern_length) max = WAVEFRONT_OFFSET_NULL;
    out_m[k] = max;
  }
}
/*
 * Compute Wavefronts (gap-linear)
 */
void wavefront_compute_linear_dispatcher(
    wavefront_aligner_t* const wf_aligner,
    wavefront_set_t* const wavefront_set,
    const int lo,
    const int hi) {
  // Parameters
  const bool bt_piggyback = wf_aligner->wf_components.bt_piggyback;
  const int num_threads = wavefront_compute_num_threads(wf_aligner,lo,hi);
  // Multithreading dispatcher
  if (num_threads == 1) {
    // Compute next wavefront
    if (bt_piggyback) {
      wavefront_compute_linear_idm_piggyback(wf_aligner,wavefront_set,lo,hi);
    } else {
      wavefront_compute_linear_idm(wf_aligner,wavefront_set,lo,hi);
    }
  } else {
#ifdef WFA_PARALLEL
    // Compute next wavefront in parallel
    #pragma omp parallel num_threads(num_threads)
    {
      int t_lo, t_hi;
      const int thread_id = omp_get_thread_num();
      const int thread_num = omp_get_num_threads();
      wavefront_compute_thread_limits(thread_id,thread_num,lo,hi,&t_lo,&t_hi);
      if (bt_piggyback) {
        wavefront_compute_linear_idm_piggyback(wf_aligner,wavefront_set,t_lo,t_hi);
      } else {
        wavefront_compute_linear_idm(wf_aligner,wavefront_set,t_lo,t_hi);
      }
    }
#endif
  }
}
void wavefront_compute_linear(
    wavefront_aligner_t* const wf_aligner,
    const int score) {
  // Select wavefronts
  wavefront_set_t wavefront_set;
  wavefront_compute_fetch_input(wf_aligner,&wavefront_set,score);
  // Check null wavefronts
  if (wavefront_set.in_mwavefront_misms->null &&
      wavefront_set.in_mwavefront_open1->null) {
    wf_aligner->align_status.num_null_steps++; // Increment null-steps
    wavefront_compute_allocate_output_null(wf_aligner,score); // Null s-wavefront
    return;
  }
  wf_aligner->align_status.num_null_steps = 0;
  // Set limits
  int hi, lo;
  wavefront_compute_limits_input(wf_aligner,&wavefront_set,&lo,&hi);
  // Allocate wavefronts
  wavefront_compute_allocate_output(wf_aligner,&wavefront_set,score,lo,hi);
  // Init wavefront ends
  wavefront_compute_init_ends(wf_aligner,&wavefront_set,lo,hi);
  // Compute Wavefronts
  wavefront_compute_linear_dispatcher(wf_aligner,&wavefront_set,lo,hi);
  // Offload backtrace (if necessary)
  if (wf_aligner->wf_components.bt_piggyback) {
    wavefront_backtrace_offload_linear(wf_aligner,&wavefront_set,lo,hi);
  }
  // Process wavefront ends
  wavefront_compute_process_ends(wf_aligner,&wavefront_set,score);
}