1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
/*
* The MIT License
*
* Wavefront Alignment Algorithms
* Copyright (c) 2017 by Santiago Marco-Sola <santiagomsola@gmail.com>
*
* This file is part of Wavefront Alignment Algorithms.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* PROJECT: Wavefront Alignment Algorithms
* AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
* DESCRIPTION: Support functions for wavefront heuristic strategies
*/
#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "wavefront_heuristic.h"
#include "wavefront_aligner.h"
/*
* Setup
*/
void wavefront_heuristic_set_none(
wavefront_heuristic_t* const wf_heuristic) {
wf_heuristic->strategy = wf_heuristic_none;
}
void wavefront_heuristic_set_wfadaptive(
wavefront_heuristic_t* const wf_heuristic,
const int min_wavefront_length,
const int max_distance_threshold,
const int steps_between_cutoffs) {
wf_heuristic->strategy |= wf_heuristic_wfadaptive;
wf_heuristic->min_wavefront_length = min_wavefront_length;
wf_heuristic->max_distance_threshold = max_distance_threshold;
wf_heuristic->steps_between_cutoffs = steps_between_cutoffs;
// Internals
wf_heuristic->steps_wait = steps_between_cutoffs;
}
void wavefront_heuristic_set_wfmash(
wavefront_heuristic_t* const wf_heuristic,
const int min_wavefront_length,
const int max_distance_threshold,
const int steps_between_cutoffs) {
wf_heuristic->strategy |= wf_heuristic_wfmash;
wf_heuristic->min_wavefront_length = min_wavefront_length;
wf_heuristic->max_distance_threshold = max_distance_threshold;
wf_heuristic->steps_between_cutoffs = steps_between_cutoffs;
// Internals
wf_heuristic->steps_wait = steps_between_cutoffs;
}
void wavefront_heuristic_set_xdrop(
wavefront_heuristic_t* const wf_heuristic,
const int xdrop,
const int steps_between_cutoffs) {
wf_heuristic->strategy |= wf_heuristic_xdrop;
wf_heuristic->xdrop = xdrop;
wf_heuristic->steps_between_cutoffs = steps_between_cutoffs;
// Internals
wf_heuristic->steps_wait = steps_between_cutoffs;
wf_heuristic->max_sw_score = 0;
wf_heuristic->max_sw_score_offset = WAVEFRONT_OFFSET_NULL;
wf_heuristic->max_sw_score_k = DPMATRIX_DIAGONAL_NULL;
}
void wavefront_heuristic_set_zdrop(
wavefront_heuristic_t* const wf_heuristic,
const int zdrop,
const int steps_between_cutoffs) {
wf_heuristic->strategy |= wf_heuristic_zdrop;
wf_heuristic->zdrop = zdrop;
wf_heuristic->steps_between_cutoffs = steps_between_cutoffs;
// Internals
wf_heuristic->steps_wait = steps_between_cutoffs;
wf_heuristic->max_sw_score = 0;
wf_heuristic->max_sw_score_offset = WAVEFRONT_OFFSET_NULL;
wf_heuristic->max_sw_score_k = DPMATRIX_DIAGONAL_NULL;
}
void wavefront_heuristic_set_banded_static(
wavefront_heuristic_t* const wf_heuristic,
const int band_min_k,
const int band_max_k) {
wf_heuristic->strategy |= wf_heuristic_banded_static;
wf_heuristic->min_k = band_min_k;
wf_heuristic->max_k = band_max_k;
}
void wavefront_heuristic_set_banded_adaptive(
wavefront_heuristic_t* const wf_heuristic,
const int band_min_k,
const int band_max_k,
const int steps_between_cutoffs) {
wf_heuristic->strategy |= wf_heuristic_banded_adaptive;
wf_heuristic->min_k = band_min_k;
wf_heuristic->max_k = band_max_k;
wf_heuristic->steps_between_cutoffs = steps_between_cutoffs;
// Internals
wf_heuristic->steps_wait = steps_between_cutoffs;
}
void wavefront_heuristic_clear(
wavefront_heuristic_t* const wf_heuristic) {
// Internals
wf_heuristic->steps_wait = wf_heuristic->steps_between_cutoffs;
wf_heuristic->max_sw_score = 0;
wf_heuristic->max_sw_score_offset = WAVEFRONT_OFFSET_NULL;
wf_heuristic->max_sw_score_k = DPMATRIX_DIAGONAL_NULL;
}
/*
* Utils
*/
int wf_distance_end2end(
const wf_offset_t offset,
const int k,
const int pattern_length,
const int text_length) {
const int left_v = pattern_length - WAVEFRONT_V(k,offset);
const int left_h = text_length - WAVEFRONT_H(k,offset);
return (offset >= 0) ? MAX(left_v,left_h) : -WAVEFRONT_OFFSET_NULL;
}
int wf_distance_end2end_weighted(
const wf_offset_t offset,
const int k,
const int pattern_length,
const int text_length,
const int mfactor) {
const int v = WAVEFRONT_V(k,offset);
const int h = WAVEFRONT_H(k,offset);
const int left_v = ((float)(pattern_length - v)/pattern_length * mfactor);
const int left_h = ((float)(text_length - h)/text_length * mfactor);
return (offset >= 0) ? MAX(left_v,left_h) : -WAVEFRONT_OFFSET_NULL;
}
int wf_distance_endsfree(
const wf_offset_t offset,
const int k,
const int pattern_length,
const int text_length,
const int pattern_end_free,
const int text_end_free) {
const int left_v = pattern_length - WAVEFRONT_V(k,offset);
const int left_h = text_length - WAVEFRONT_H(k,offset);
const int left_v_endsfree = left_v - pattern_end_free;
const int left_h_endsfree = left_h - text_end_free;
const int dist_up = MAX(left_h,left_v_endsfree);
const int dist_down = MAX(left_v,left_h_endsfree);
return (offset >= 0) ? MIN(dist_up,dist_down) : -WAVEFRONT_OFFSET_NULL;
}
void wf_heuristic_equate(
wavefront_t* const wavefront_dst,
wavefront_t* const wavefront_src) {
if (wavefront_dst != NULL) {
if (wavefront_src->lo > wavefront_dst->lo) wavefront_dst->lo = wavefront_src->lo;
if (wavefront_src->hi < wavefront_dst->hi) wavefront_dst->hi = wavefront_src->hi;
if (wavefront_dst->lo > wavefront_dst->hi) wavefront_dst->null = true;
// Save min/max WF initialized
wavefront_dst->wf_elements_init_min = wavefront_dst->lo;
wavefront_dst->wf_elements_init_max = wavefront_dst->hi;
}
}
/*
* Heuristic Cut-off Wavefront-Adaptive
*/
int wf_compute_distance_end2end(
wavefront_t* const wavefront,
const int pattern_length,
const int text_length,
wf_offset_t* const distances) {
// Compute min-distance
const wf_offset_t* const offsets = wavefront->offsets;
int k, min_distance = MAX(pattern_length,text_length);
PRAGMA_LOOP_VECTORIZE
for (k=wavefront->lo;k<=wavefront->hi;++k) {
const int distance = wf_distance_end2end(
offsets[k],k,pattern_length,text_length);
distances[k] = distance;
min_distance = MIN(min_distance,distance);
}
return min_distance;
}
int wf_compute_distance_end2end_weighted(
wavefront_t* const wavefront,
const int pattern_length,
const int text_length,
wf_offset_t* const distances) {
// Parameters
const int mfactor = ((float)(pattern_length + text_length) / 2); // Mean sequence length
// Compute min-distance
const wf_offset_t* const offsets = wavefront->offsets;
int k, min_distance = MAX(pattern_length,text_length);
PRAGMA_LOOP_VECTORIZE
for (k=wavefront->lo;k<=wavefront->hi;++k) {
const int distance = wf_distance_end2end_weighted(
offsets[k],k,pattern_length,text_length,mfactor);
distances[k] = distance;
min_distance = MIN(min_distance,distance);
}
return min_distance;
}
int wf_compute_distance_endsfree(
wavefront_t* const wavefront,
const int pattern_length,
const int text_length,
const int pattern_end_free,
const int text_end_free,
wf_offset_t* const distances) {
// Compute min-distance
const wf_offset_t* const offsets = wavefront->offsets;
int k, min_distance = MAX(pattern_length,text_length);
PRAGMA_LOOP_VECTORIZE
for (k=wavefront->lo;k<=wavefront->hi;++k) {
const int distance = wf_distance_endsfree(
offsets[k],k,pattern_length,text_length,
pattern_end_free,text_end_free);
distances[k] = distance;
min_distance = MIN(min_distance,distance);
}
return min_distance;
}
void wf_heuristic_wfadaptive_reduce(
wavefront_t* const wavefront,
const wf_offset_t* const distances,
const int min_distance,
const int max_distance_threshold,
const int min_k,
const int max_k) {
int k;
// Reduce from bottom
const int top_limit = MIN(max_k,wavefront->hi); // Preserve target-diagonals
int lo_reduced = wavefront->lo;
for (k=wavefront->lo;k<top_limit;++k) {
if (distances[k] - min_distance <= max_distance_threshold) break;
++lo_reduced;
}
wavefront->lo = lo_reduced;
// Reduce from top
const int botton_limit = MAX(min_k,wavefront->lo); // Preserve target-diagonals
int hi_reduced = wavefront->hi;
for (k=wavefront->hi;k>botton_limit;--k) {
if (distances[k] - min_distance <= max_distance_threshold) break;
--hi_reduced;
}
wavefront->hi = hi_reduced;
}
void wavefront_heuristic_wfadaptive(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const bool wfmash_mode) {
// Parameters
const int pattern_length = wf_aligner->pattern_length;
const int text_length = wf_aligner->text_length;
const int min_wavefront_length = wf_aligner->heuristic.min_wavefront_length;
const int max_distance_threshold = wf_aligner->heuristic.max_distance_threshold;
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
// Check steps
if (wf_heuristic->steps_wait > 0) return;
// Check minimum wavefront length
const int base_hi = wavefront->hi;
const int base_lo = wavefront->lo;
if ((base_hi - base_lo + 1) < min_wavefront_length) return;
// Use victim as temporal buffer
wavefront_components_resize_null__victim(&wf_aligner->wf_components,base_lo-1,base_hi+1);
wf_offset_t* const distances = wf_aligner->wf_components.wavefront_victim->offsets;
// Compute distance & cut-off
int min_distance;
if (wfmash_mode) {
min_distance = wf_compute_distance_end2end_weighted(
wavefront,pattern_length,text_length,distances);
} else {
min_distance = wf_compute_distance_end2end(
wavefront,pattern_length,text_length,distances);
}
// Cut-off wavefront
const int alignment_k = DPMATRIX_DIAGONAL(text_length,pattern_length);
wf_heuristic_wfadaptive_reduce(
wavefront,distances,min_distance,max_distance_threshold,
alignment_k,alignment_k);
// Set wait steps (don't repeat this heuristic often)
wf_heuristic->steps_wait = wf_heuristic->steps_between_cutoffs;
}
/*
* Heuristic Cut-off Drops
*/
void wf_heuristic_compute_sw_scores(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const int wf_score,
wf_offset_t* const sw_scores,
wf_offset_t* const max_sw_score,
wf_offset_t* const max_k,
wf_offset_t* const max_offset) {
// Parameters
const int wf_match = wf_aligner->penalties.match;
const int swg_match = (wf_match==0) ? 1 : -(wf_aligner->penalties.match);
// Compute min-distance
const wf_offset_t* const offsets = wavefront->offsets;
int k, cmax_sw_score = INT_MIN, cmax_k = 0, cmax_offset = 0;
PRAGMA_LOOP_VECTORIZE
for (k=wavefront->lo;k<=wavefront->hi;++k) {
const wf_offset_t offset = offsets[k];
if (offset < 0) continue;
const int v = WAVEFRONT_V(k,offset);
const int h = WAVEFRONT_H(k,offset);
const int sw_score = (wf_match==0) ?
(swg_match*(v+h) - wf_score) :
WF_SCORE_TO_SW_SCORE(swg_match,v,h,wf_score);
sw_scores[k] = sw_score;
if (cmax_sw_score < sw_score) {
cmax_sw_score = sw_score;
cmax_k = k;
cmax_offset = offset;
}
}
*max_sw_score = cmax_sw_score;
*max_k = cmax_k;
*max_offset = cmax_offset;
}
void wavefront_heuristic_xdrop(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const int score) {
// Parameters
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
const int base_hi = wavefront->hi;
const int base_lo = wavefront->lo;
// Check steps
if (wf_heuristic->steps_wait > 0) return;
// Use victim as temporal buffer
wavefront_components_resize_null__victim(&wf_aligner->wf_components,base_lo-1,base_hi+1);
wf_offset_t* const sw_scores = wf_aligner->wf_components.wavefront_victim->offsets;
// Compute SW scores
wf_offset_t cmax_sw_score, cmax_k, dummy;
wf_heuristic_compute_sw_scores(
wf_aligner,wavefront,score,sw_scores,
&cmax_sw_score,&cmax_k,&dummy);
// Apply X-Drop
const int xdrop = wf_heuristic->xdrop;
const int max_sw_score = wf_heuristic->max_sw_score;
const wf_offset_t* const offsets = wavefront->offsets;
if (wf_heuristic->max_sw_score_k != DPMATRIX_DIAGONAL_NULL) {
// Reduce from bottom
int k;
for (k=wavefront->lo;k<=wavefront->hi;++k) {
if (offsets[k] < 0) continue;
//fprintf(stderr,"[XDROP] (max=%d,current=%d) diff=%d leeway=%d\n",
// max_sw_score,(int)sw_scores[k],
// max_sw_score - (int)sw_scores[k],xdrop);
if (max_sw_score - (int)sw_scores[k] < xdrop) break;
}
wavefront->lo = k;
// Reduce from top
for (k=wavefront->hi;k>=wavefront->lo;--k) {
if (offsets[k] < 0) continue;
//fprintf(stderr,"[XDROP] (max=%d,current=%d) diff=%d leeway=%d\n",
// max_sw_score,(int)sw_scores[k],
// max_sw_score - (int)sw_scores[k],xdrop);
if (max_sw_score - (int)sw_scores[k] < xdrop) break;
}
wavefront->hi = k;
// Update maximum score observed
if (cmax_sw_score > wf_heuristic->max_sw_score) {
wf_heuristic->max_sw_score = cmax_sw_score;
wf_heuristic->max_sw_score_k = cmax_k;
}
} else {
// Update maximum score observed
wf_heuristic->max_sw_score = cmax_sw_score;
wf_heuristic->max_sw_score_k = cmax_k;
}
// Set wait steps (don't repeat this heuristic often)
wf_heuristic->steps_wait = wf_heuristic->steps_between_cutoffs;
}
int wf_zdrop_gap_score(
const int gap_extension_penalty,
const wf_offset_t offset_1,
const int k_1,
const wf_offset_t offset_2,
const int k_2) {
int diff_h = WAVEFRONT_H(k_2,offset_2) - WAVEFRONT_H(k_1,offset_1);
if (diff_h < 0) diff_h = -diff_h;
int diff_v = WAVEFRONT_V(k_2,offset_2) - WAVEFRONT_V(k_1,offset_1);
if (diff_v < 0) diff_v = -diff_v;
const int gap_length = (diff_h >= diff_v) ? diff_h-diff_v : diff_v-diff_h;
return gap_length * gap_extension_penalty;
}
void wavefront_heuristic_zdrop(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront,
const int score) {
// Parameters
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
const int base_hi = wavefront->hi;
const int base_lo = wavefront->lo;
// Check steps
if (wf_heuristic->steps_wait > 0) return;
// Use victim as temporal buffer
wavefront_components_resize_null__victim(&wf_aligner->wf_components,base_lo-1,base_hi+1);
wf_offset_t* const sw_scores = wf_aligner->wf_components.wavefront_victim->offsets;
// Compute SW scores
wf_offset_t cmax_sw_score, cmax_k, cmax_offset;
wf_heuristic_compute_sw_scores(
wf_aligner,wavefront,score,sw_scores,
&cmax_sw_score,&cmax_k,&cmax_offset);
// Apply Z-Drop
wavefront_penalties_t* const penalties = &wf_aligner->penalties;
const int gap_e = (penalties->gap_extension1 > 0) ? penalties->gap_extension1 : 1;
const int zdrop = wf_heuristic->zdrop;
const int max_sw_score = wf_heuristic->max_sw_score;
const int max_k = wf_heuristic->max_sw_score_k;
const int max_offset = wf_heuristic->max_sw_score_offset;
if (max_k != DPMATRIX_DIAGONAL_NULL) {
// Update maximum score observed
if (cmax_sw_score > wf_heuristic->max_sw_score) {
wf_heuristic->max_sw_score = cmax_sw_score;
wf_heuristic->max_sw_score_k = cmax_k;
wf_heuristic->max_sw_score_offset = cmax_offset;
} else {
// Test Z-drop
const int gap_score = wf_zdrop_gap_score(gap_e,max_offset,max_k,cmax_offset,cmax_k);
// fprintf(stderr,"[Z-DROP] (max=%d~(%d,%d),current=%d~(%d,%d)) diff=%d leeway=%d\n",
// max_sw_score,WAVEFRONT_V(max_k,max_offset),WAVEFRONT_H(max_k,max_offset),
// cmax_sw_score,WAVEFRONT_V(cmax_k,cmax_offset),WAVEFRONT_H(cmax_k,cmax_offset),
// max_sw_score - cmax_sw_score,
// zdrop + gap_score);
if (max_sw_score - (int)cmax_sw_score > zdrop + gap_score) {
wavefront->lo = wavefront->hi + 1;
return; // Z-dropped
}
}
} else {
// Update maximum score observed
wf_heuristic->max_sw_score = cmax_sw_score;
wf_heuristic->max_sw_score_k = cmax_k;
wf_heuristic->max_sw_score_offset = cmax_offset;
}
// Set wait steps (don't repeat this heuristic often)
wf_heuristic->steps_wait = wf_heuristic->steps_between_cutoffs;
}
/*
* Heuristic Cut-off Banded
*/
void wavefront_heuristic_banded_static(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront) {
// Parameters
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
// Check wavefront limits
if (wavefront->lo < wf_heuristic->min_k) wavefront->lo = wf_heuristic->min_k;
if (wavefront->hi > wf_heuristic->max_k) wavefront->hi = wf_heuristic->max_k;
}
void wavefront_heuristic_banded_adaptive(
wavefront_aligner_t* const wf_aligner,
wavefront_t* const wavefront) {
// Parameters
const int pattern_length = wf_aligner->pattern_length;
const int text_length = wf_aligner->text_length;
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
// Check steps
if (wf_heuristic->steps_wait > 0) return;
// Check wavefront length
const int lo = wavefront->lo;
const int hi = wavefront->hi;
const int wf_length = hi - lo + 1;
if (wf_length < 4) return; // We cannot do anything here
// Adjust the band
const wf_offset_t* const offsets = wavefront->offsets;
const int max_wf_length = wf_heuristic->max_k - wf_heuristic->min_k + 1;
if (wf_length > max_wf_length) {
// Sample wavefront
const int leeway = (wf_length - max_wf_length) / 2;
const int quarter = wf_length / 4;
const int dist_p0 = wf_distance_end2end(
offsets[lo],lo,pattern_length,text_length);
const int dist_p1 = wf_distance_end2end(
offsets[lo+quarter],lo+quarter,pattern_length,text_length);
const int dist_p2 = wf_distance_end2end(
offsets[lo+2*quarter],lo+2*quarter,pattern_length,text_length);
const int dist_p3 = wf_distance_end2end(
offsets[hi],hi,pattern_length,text_length);
// Heuristically decide where to place the band
int new_lo = lo;
if (dist_p0 > dist_p3) new_lo += leeway;
if (dist_p1 > dist_p2) new_lo += leeway;
// Set wavefront limits
wavefront->lo = new_lo;
if (wavefront->lo < lo) wavefront->lo = lo;
wavefront->hi = new_lo + max_wf_length - 1;
if (wavefront->hi > hi) wavefront->hi = hi;
}
// Set wait steps (don't repeat this heuristic often)
wf_heuristic->steps_wait = wf_heuristic->steps_between_cutoffs;
}
/*
* Heuristic Cut-offs dispatcher
*/
void wavefront_heuristic_cufoff(
wavefront_aligner_t* const wf_aligner,
const int score,
const int score_mod) {
// Parameters
wavefront_components_t* const wf_components = &wf_aligner->wf_components;
const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
wavefront_heuristic_t* const wf_heuristic = &wf_aligner->heuristic;
// Fetch m-wavefront
wavefront_t* const mwavefront = wf_components->mwavefronts[score_mod];
if (mwavefront == NULL || mwavefront->lo > mwavefront->hi) return;
// Decrease wait steps
--(wf_heuristic->steps_wait);
// Select heuristic (WF-Adaptive)
if (wf_heuristic->strategy & wf_heuristic_wfadaptive) {
wavefront_heuristic_wfadaptive(wf_aligner,mwavefront,false);
} else if (wf_heuristic->strategy & wf_heuristic_wfmash) {
wavefront_heuristic_wfadaptive(wf_aligner,mwavefront,true);
}
// Select heuristic (Drops)
if (wf_heuristic->strategy & wf_heuristic_xdrop) {
wavefront_heuristic_xdrop(wf_aligner,mwavefront,score);
} else if (wf_heuristic->strategy & wf_heuristic_zdrop) {
wavefront_heuristic_zdrop(wf_aligner,mwavefront,score);
}
// Select heuristic (Banded)
if (wf_heuristic->strategy & wf_heuristic_banded_static) {
wavefront_heuristic_banded_static(wf_aligner,mwavefront);
} else if (wf_heuristic->strategy & wf_heuristic_banded_adaptive) {
wavefront_heuristic_banded_adaptive(wf_aligner,mwavefront);
}
// Check wavefront length
if (mwavefront->lo > mwavefront->hi) mwavefront->null = true;
// DEBUG
// const int wf_length_base = hi_base-lo_base+1;
// const int wf_length_reduced = mwavefront->hi-mwavefront->lo+1;
// fprintf(stderr,"[WFA::Heuristic] Heuristic from %d to %d offsets (%2.2f%%)\n",
// wf_length_base,wf_length_reduced,100.0f*(float)wf_length_reduced/(float)wf_length_base);
// Save min/max WF initialized
mwavefront->wf_elements_init_min = mwavefront->lo;
mwavefront->wf_elements_init_max = mwavefront->hi;
// Equate other wavefronts
if (distance_metric <= gap_linear) return;
// Cut-off the other wavefronts (same dimensions as M)
wavefront_t* const i1wavefront = wf_components->i1wavefronts[score_mod];
wavefront_t* const d1wavefront = wf_components->d1wavefronts[score_mod];
wf_heuristic_equate(i1wavefront,mwavefront);
wf_heuristic_equate(d1wavefront,mwavefront);
if (distance_metric == gap_affine) return;
wavefront_t* const i2wavefront = wf_components->i2wavefronts[score_mod];
wavefront_t* const d2wavefront = wf_components->d2wavefronts[score_mod];
wf_heuristic_equate(i2wavefront,mwavefront);
wf_heuristic_equate(d2wavefront,mwavefront);
}
/*
* Display
*/
void wavefront_heuristic_print(
FILE* const stream,
wavefront_heuristic_t* const wf_heuristic) {
// Select heuristic strategy
if (wf_heuristic->strategy == wf_heuristic_none) {
fprintf(stream,"(none)");
} else {
// WF-Adaptive
if (wf_heuristic->strategy & wf_heuristic_wfadaptive) {
fprintf(stream,"(wfadapt,%d,%d,%d)",
wf_heuristic->min_wavefront_length,
wf_heuristic->max_distance_threshold,
wf_heuristic->steps_between_cutoffs);
} else if (wf_heuristic->strategy & wf_heuristic_wfmash) {
fprintf(stream,"(wfmash,%d,%d,%d)",
wf_heuristic->min_wavefront_length,
wf_heuristic->max_distance_threshold,
wf_heuristic->steps_between_cutoffs);
}
// Drops
if (wf_heuristic->strategy & wf_heuristic_xdrop) {
fprintf(stream,"(xdrop,%d,%d)",
wf_heuristic->xdrop,
wf_heuristic->steps_between_cutoffs);
}
if (wf_heuristic->strategy & wf_heuristic_zdrop) {
fprintf(stream,"(zdrop,%d,%d)",
wf_heuristic->zdrop,
wf_heuristic->steps_between_cutoffs);
}
// Banded
if (wf_heuristic->strategy & wf_heuristic_banded_static) {
fprintf(stream,"(banded-static,%d,%d)",
wf_heuristic->min_k,
wf_heuristic->max_k);
}
if (wf_heuristic->strategy & wf_heuristic_banded_adaptive) {
fprintf(stream,"(banded-adapt,%d,%d,%d)",
wf_heuristic->min_k,
wf_heuristic->max_k,
wf_heuristic->steps_between_cutoffs);
}
}
}
|