File: wavefront_unialign.c

package info (click to toggle)
libwfa2 2.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,072 kB
  • sloc: ansic: 13,812; python: 540; cpp: 500; makefile: 268; sh: 176; lisp: 41
file content (490 lines) | stat: -rw-r--r-- 19,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
 *                             The MIT License
 *
 * Wavefront Alignment Algorithms
 * Copyright (c) 2017 by Santiago Marco-Sola  <santiagomsola@gmail.com>
 *
 * This file is part of Wavefront Alignment Algorithms.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * PROJECT: Wavefront Alignment Algorithms
 * AUTHOR(S): Santiago Marco-Sola <santiagomsola@gmail.com>
 */

#include "utils/commons.h"
#include "system/mm_allocator.h"
#include "wavefront_unialign.h"
#include "wavefront.h"
#include "wavefront_attributes.h"
#include "wavefront_offset.h"
#include "wavefront_penalties.h"
#include "wavefront_plot.h"
#include "wavefront_slab.h"

#include "wavefront_components.h"
#include "wavefront_compute.h"
#include "wavefront_compute_affine.h"
#include "wavefront_compute_affine2p.h"
#include "wavefront_compute_edit.h"
#include "wavefront_compute_linear.h"
#include "wavefront_extend.h"
#include "wavefront_backtrace.h"
#include "wavefront_backtrace_buffer.h"

/*
 * Configuration
 */
#define SEQUENCES_PADDING     10

/*
 * Setup
 */
void wavefront_unialign_status_clear(
    wavefront_align_status_t* const align_status) {
  align_status->status = WF_STATUS_SUCCESSFUL;
  align_status->score = 0;
}
void wavefront_unialigner_system_clear(
    wavefront_aligner_t* const wf_aligner) {
  // Reset effective limits
  wf_aligner->system.max_memory_compact = BUFFER_SIZE_256M;
  wf_aligner->system.max_memory_resident = BUFFER_SIZE_256M + BUFFER_SIZE_256M;
  switch (wf_aligner->memory_mode) {
    case wavefront_memory_med:
      wf_aligner->system.max_partial_compacts = 4;
      break;
    case wavefront_memory_low:
      wf_aligner->system.max_partial_compacts = 1;
      break;
    default:
      break;
  }
  // Profile
  timer_reset(&wf_aligner->system.timer);
}
/*
 * Resize
 */
void wavefront_unialign_resize(
    wavefront_aligner_t* const wf_aligner,
    const char* const pattern,
    const int pattern_length,
    const char* const text,
    const int text_length,
    const bool reverse_sequences) {
  // Configure sequences and status
  wf_aligner->pattern_length = pattern_length;
  wf_aligner->text_length = text_length;
  if (wf_aligner->match_funct == NULL) {
    if (wf_aligner->sequences != NULL) strings_padded_delete(wf_aligner->sequences);
    wf_aligner->sequences = strings_padded_new_rhomb(
            pattern,pattern_length,text,text_length,
            SEQUENCES_PADDING,reverse_sequences,
            wf_aligner->mm_allocator);
    wf_aligner->pattern = wf_aligner->sequences->pattern_padded;
    wf_aligner->text = wf_aligner->sequences->text_padded;
  } else {
    wf_aligner->sequences = NULL;
    wf_aligner->pattern = NULL;
    wf_aligner->text = NULL;
  }
  wavefront_unialign_status_clear(&wf_aligner->align_status);
  // Heuristics clear
  wavefront_heuristic_clear(&wf_aligner->heuristic);
  // Wavefront components
  wavefront_components_resize(&wf_aligner->wf_components,
      pattern_length,text_length,&wf_aligner->penalties);
  // CIGAR
  if (wf_aligner->alignment_scope == compute_alignment) {
    cigar_resize(wf_aligner->cigar,2*(pattern_length+text_length));
  }
  // Slab
  wavefront_slab_clear(wf_aligner->wavefront_slab);
  // System
  wavefront_unialigner_system_clear(wf_aligner);
}
/*
 * Initialize alignment
 */
void wavefront_unialign_initialize_wavefront_m(
    wavefront_aligner_t* const wf_aligner,
    const int pattern_length,
    const int text_length) {
  // Parameters
  wavefront_slab_t* const wavefront_slab = wf_aligner->wavefront_slab;
  wavefront_components_t* const wf_components = &wf_aligner->wf_components;
  const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
  wavefront_penalties_t* const penalties = &wf_aligner->penalties;
  alignment_form_t* const form = &wf_aligner->alignment_form;
  // Consider ends-free
  const int hi = (penalties->match==0) ? form->text_begin_free : 0;
  const int lo = (penalties->match==0) ? -form->pattern_begin_free : 0;
  // Compute dimensions
  int effective_lo, effective_hi;
  wavefront_compute_limits_output(wf_aligner,lo,hi,&effective_lo,&effective_hi);
  // Initialize end2end (wavefront zero)
  wf_components->mwavefronts[0] = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
  wf_components->mwavefronts[0]->offsets[0] = 0;
  wf_components->mwavefronts[0]->lo = lo;
  wf_components->mwavefronts[0]->hi = hi;
  // Store initial BT-piggypack element
  if (wf_components->bt_piggyback) {
    const bt_block_idx_t block_idx = wf_backtrace_buffer_init_block(wf_components->bt_buffer,0,0);
    wf_components->mwavefronts[0]->bt_pcigar[0] = 0;
    wf_components->mwavefronts[0]->bt_prev[0] = block_idx;
  }
  // Initialize ends-free
  if (form->span == alignment_endsfree && penalties->match == 0) {
    // Text begin-free
    const int text_begin_free = form->text_begin_free;
    int h;
    for (h=1;h<=text_begin_free;++h) {
      const int k = DPMATRIX_DIAGONAL(h,0);
      wf_components->mwavefronts[0]->offsets[k] = DPMATRIX_OFFSET(h,0);
      if (wf_components->bt_piggyback) {
        const bt_block_idx_t block_idx = wf_backtrace_buffer_init_block(wf_components->bt_buffer,0,h);
        wf_components->mwavefronts[0]->bt_pcigar[k] = 0;
        wf_components->mwavefronts[0]->bt_prev[k] = block_idx;
      }
    }
    // Pattern begin-free
    const int pattern_begin_free = form->pattern_begin_free;
    int v;
    for (v=1;v<=pattern_begin_free;++v) {
      const int k = DPMATRIX_DIAGONAL(0,v);
      wf_components->mwavefronts[0]->offsets[k] = DPMATRIX_OFFSET(0,v);
      if (wf_components->bt_piggyback) {
        const bt_block_idx_t block_idx = wf_backtrace_buffer_init_block(wf_components->bt_buffer,v,0);
        wf_components->mwavefronts[0]->bt_pcigar[k] = 0;
        wf_components->mwavefronts[0]->bt_prev[k] = block_idx;
      }
    }
  }
  // Nullify unused WFs
  if (distance_metric <= gap_linear) return;
  wf_components->d1wavefronts[0] = NULL;
  wf_components->i1wavefronts[0] = NULL;
  if (distance_metric==gap_affine) return;
  wf_components->d2wavefronts[0] = NULL;
  wf_components->i2wavefronts[0] = NULL;
}
void wavefront_unialign_initialize_wavefronts(
    wavefront_aligner_t* const wf_aligner,
    const int pattern_length,
    const int text_length) {
  // Parameters
  wavefront_slab_t* const wavefront_slab = wf_aligner->wavefront_slab;
  wavefront_components_t* const wf_components = &wf_aligner->wf_components;
  const distance_metric_t distance_metric = wf_aligner->penalties.distance_metric;
  // Init wavefronts
  if (wf_aligner->component_begin == affine2p_matrix_M) {
    // Initialize
    wavefront_unialign_initialize_wavefront_m(wf_aligner,pattern_length,text_length);
    // Nullify unused WFs
    if (distance_metric <= gap_linear) return;
    wf_components->i1wavefronts[0] = NULL;
    wf_components->d1wavefronts[0] = NULL;
    if (distance_metric==gap_affine) return;
    wf_components->i2wavefronts[0] = NULL;
    wf_components->d2wavefronts[0] = NULL;
  } else {
    // Compute dimensions
    int effective_lo, effective_hi; // Effective lo/hi
    wavefront_compute_limits_output(wf_aligner,0,0,&effective_lo,&effective_hi);
    wavefront_t* const wavefront = wavefront_slab_allocate(wavefront_slab,effective_lo,effective_hi);
    // Initialize
    switch (wf_aligner->component_begin) {
      case affine2p_matrix_I1:
        wf_components->mwavefronts[0] = NULL;
        wf_components->i1wavefronts[0] = wavefront;
        wf_components->i1wavefronts[0]->offsets[0] = 0;
        wf_components->i1wavefronts[0]->lo = 0;
        wf_components->i1wavefronts[0]->hi = 0;
        wf_components->d1wavefronts[0] = NULL;
        // Nullify unused WFs
        if (distance_metric==gap_affine) return;
        wf_components->i2wavefronts[0] = NULL;
        wf_components->d2wavefronts[0] = NULL;
        break;
      case affine2p_matrix_I2:
        wf_components->mwavefronts[0] = NULL;
        wf_components->i1wavefronts[0] = NULL;
        wf_components->d1wavefronts[0] = NULL;
        wf_components->i2wavefronts[0] = wavefront;
        wf_components->i2wavefronts[0]->offsets[0] = 0;
        wf_components->i2wavefronts[0]->lo = 0;
        wf_components->i2wavefronts[0]->hi = 0;
        wf_components->d2wavefronts[0] = NULL;
        break;
      case affine2p_matrix_D1:
        wf_components->mwavefronts[0] = NULL;
        wf_components->i1wavefronts[0] = NULL;
        wf_components->d1wavefronts[0] = wavefront;
        wf_components->d1wavefronts[0]->offsets[0] = 0;
        wf_components->d1wavefronts[0]->lo = 0;
        wf_components->d1wavefronts[0]->hi = 0;
        // Nullify unused WFs
        if (distance_metric==gap_affine) return;
        wf_components->i2wavefronts[0] = NULL;
        wf_components->d2wavefronts[0] = NULL;
        break;
      case affine2p_matrix_D2:
        wf_components->mwavefronts[0] = NULL;
        wf_components->i1wavefronts[0] = NULL;
        wf_components->d1wavefronts[0] = NULL;
        wf_components->i2wavefronts[0] = NULL;
        wf_components->d2wavefronts[0] = wavefront;
        wf_components->d2wavefronts[0]->offsets[0] = 0;
        wf_components->d2wavefronts[0]->lo = 0;
        wf_components->d2wavefronts[0]->hi = 0;
        break;
      default:
        break;
    }
  }
}
void wavefront_unialign_init(
    wavefront_aligner_t* const wf_aligner,
    const char* const pattern,
    const int pattern_length,
    const char* const text,
    const int text_length,
    const affine2p_matrix_type component_begin,
    const affine2p_matrix_type component_end) {
  // Parameters
  wavefront_align_status_t* const align_status = &wf_aligner->align_status;
  // Resize wavefront aligner
  wavefront_unialign_resize(wf_aligner,pattern,pattern_length,text,text_length,false);
  // Configure WF-compute function
  switch (wf_aligner->penalties.distance_metric) {
    case indel:
    case edit:
      align_status->wf_align_compute = &wavefront_compute_edit;
      break;
    case gap_linear:
      align_status->wf_align_compute = &wavefront_compute_linear;
      break;
    case gap_affine:
      align_status->wf_align_compute = &wavefront_compute_affine;
      break;
    case gap_affine_2p:
      align_status->wf_align_compute = &wavefront_compute_affine2p;
      break;
    default:
      fprintf(stderr,"[WFA] Distance function not implemented\n");
      exit(1);
      break;
  }
  // Configure WF-extend function
  const bool end2end = (wf_aligner->alignment_form.span == alignment_end2end);
  if (wf_aligner->match_funct != NULL) {
    align_status->wf_align_extend = &wavefront_extend_custom;
  } else if (end2end) {
    align_status->wf_align_extend = &wavefront_extend_end2end;
  } else {
    align_status->wf_align_extend = &wavefront_extend_endsfree;
  }
  // Initialize wavefront
  wf_aligner->alignment_end_pos.score = -1; // Not aligned
  wf_aligner->alignment_end_pos.k = DPMATRIX_DIAGONAL_NULL;
  wf_aligner->component_begin = component_begin;
  wf_aligner->component_end = component_end;
  wavefront_unialign_initialize_wavefronts(wf_aligner,pattern_length,text_length);
  // Plot (WF_0)
  if (wf_aligner->plot != NULL) wavefront_plot(wf_aligner,0,0);
}
/*
 * Limits
 */
bool wavefront_unialign_reached_limits(
    wavefront_aligner_t* const wf_aligner,
    const int score) {
  // Check alignment-score limit
  if (score >= wf_aligner->system.max_alignment_score) {
    wf_aligner->cigar->score = wf_aligner->system.max_alignment_score;
    wf_aligner->align_status.status = WF_STATUS_MAX_SCORE_REACHED;
    wf_aligner->align_status.score = score;
    return true; // Stop
  }
  // Global probing interval
  alignment_system_t* const system = &wf_aligner->system;
  if (score % system->probe_interval_global != 0) return false; // Continue
  if (system->verbose >= 3) {
    wavefront_unialign_print_status(stderr,wf_aligner,score); // DEBUG
  }
  // BT-Buffer
  wavefront_components_t* const wf_components = &wf_aligner->wf_components;
  if (wf_components->bt_buffer!=NULL && (score%system->probe_interval_compact)==0) {
    uint64_t bt_memory = wf_backtrace_buffer_get_size_used(wf_components->bt_buffer);
    // Check BT-buffer memory
    if (bt_memory > system->max_memory_compact) {
      // Compact BT-buffer
      wavefront_components_compact_bt_buffer(wf_components,score,wf_aligner->system.verbose);
      // Set new buffer limit
      bt_memory = wf_backtrace_buffer_get_size_used(wf_components->bt_buffer);
      uint64_t proposed_mem = (double)bt_memory * TELESCOPIC_FACTOR;
      if (system->max_memory_compact < proposed_mem && proposed_mem < system->max_memory_abort) {
        proposed_mem = system->max_memory_compact;
      }
      // Reset (if maximum compacts has been performed)
      if (wf_components->bt_buffer->num_compactions >= system->max_partial_compacts) {
        wf_backtrace_buffer_reset_compaction(wf_components->bt_buffer);
      }
    }
  }
  // Check overall memory used
  const uint64_t wf_memory_used = wavefront_aligner_get_size(wf_aligner);
  if (wf_memory_used > system->max_memory_abort) {
    wf_aligner->align_status.status = WF_STATUS_OOM;
    wf_aligner->align_status.score = score;
    return true; // Stop
  }
  // Otherwise continue
  return false;
}
/*
 * Terminate alignment (backtrace)
 */
void wavefront_unialign_terminate(
    wavefront_aligner_t* const wf_aligner,
    const int score) {
  // Parameters
  const int pattern_length = wf_aligner->pattern_length;
  const int text_length = wf_aligner->text_length;
  // Retrieve alignment
  if (wf_aligner->alignment_scope == compute_score) {
    cigar_clear(wf_aligner->cigar);
    wf_aligner->cigar->score =
        wavefront_compute_classic_score(wf_aligner,pattern_length,text_length,score);
  } else {
    // Parameters
    wavefront_components_t* const wf_components = &wf_aligner->wf_components;
    const int alignment_end_k = wf_aligner->alignment_end_pos.k;
    const wf_offset_t alignment_end_offset = wf_aligner->alignment_end_pos.offset;
    if (wf_components->bt_piggyback) {
      // Fetch wavefront
      const bool memory_modular = wf_aligner->wf_components.memory_modular;
      const int max_score_scope = wf_aligner->wf_components.max_score_scope;
      const int score_mod = (memory_modular) ? score % max_score_scope : score;
      wavefront_t* const mwavefront = wf_components->mwavefronts[score_mod];
      // Backtrace alignment from buffer (unpacking pcigar)
      wavefront_backtrace_pcigar(
          wf_aligner,alignment_end_k,alignment_end_offset,
          mwavefront->bt_pcigar[alignment_end_k],
          mwavefront->bt_prev[alignment_end_k]);
    } else {
      // Backtrace alignment
      if (wf_aligner->penalties.distance_metric <= gap_linear) {
        wavefront_backtrace_linear(wf_aligner,
            score,alignment_end_k,alignment_end_offset);
      } else {
        wavefront_backtrace_affine(wf_aligner,
            wf_aligner->component_begin,wf_aligner->component_end,
            score,alignment_end_k,alignment_end_offset);
      }
    }
    // Set score & finish
    wf_aligner->cigar->score =
        wavefront_compute_classic_score(wf_aligner,pattern_length,text_length,score);
  }
  // Set successful
  wf_aligner->align_status.status = WF_STATUS_SUCCESSFUL;
}
/*
 * Classic WF-Alignment (Unidirectional)
 */
int wavefront_unialign(
    wavefront_aligner_t* const wf_aligner) {
  // Parameters
  wavefront_align_status_t* const align_status = &wf_aligner->align_status;
  void (*wf_align_compute)(wavefront_aligner_t* const,const int) = align_status->wf_align_compute;
  int (*wf_align_extend)(wavefront_aligner_t* const,const int) = align_status->wf_align_extend;
  // Compute wavefronts of increasing score
  align_status->num_null_steps = 0;
  int score = align_status->score;
  while (true) {
    // Exact extend s-wavefront
    const int finished = (*wf_align_extend)(wf_aligner,score);
    if (finished) {
      // DEBUG
      // wavefront_aligner_print(stderr,wf_aligner,0,score,7,0);
      if (align_status->status == WF_STATUS_END_REACHED) {
        wavefront_unialign_terminate(wf_aligner,score);
      }
      return align_status->status;
    }
    // Compute (s+1)-wavefront
    ++score;
    (*wf_align_compute)(wf_aligner,score);
    // Probe limits
    if (wavefront_unialign_reached_limits(wf_aligner,score)) return align_status->status;
    // Plot
    if (wf_aligner->plot != NULL) wavefront_plot(wf_aligner,score,0);
    // DEBUG
    //wavefront_aligner_print(stderr,wf_aligner,score,score,7,0);
  }
  // Return OK
  align_status->score = score;
  align_status->status = WF_STATUS_SUCCESSFUL;
  return WF_STATUS_SUCCESSFUL;
}
/*
 * Display
 */
void wavefront_unialign_print_status(
    FILE* const stream,
    wavefront_aligner_t* const wf_aligner,
    const int score) {
  // Parameters
  wavefront_components_t* const wf_components = &wf_aligner->wf_components;
  // Approximate progress
  const int dist_total = MAX(wf_aligner->text_length,wf_aligner->pattern_length);
  int s = (wf_components->memory_modular) ? score%wf_components->max_score_scope : score;
  wavefront_t* wavefront = wf_components->mwavefronts[s];
  if (wavefront==NULL && s>0) {
    s = (wf_components->memory_modular) ? (score-1)%wf_components->max_score_scope : (score-1);
    wavefront = wf_components->mwavefronts[s];
  }
  int dist_max = -1, wf_len = -1, k;
  if (wavefront!=NULL) {
    wf_offset_t* const offsets = wavefront->offsets;
    for (k=wavefront->lo;k<=wavefront->hi;++k) {
      const int dist = MAX(WAVEFRONT_V(k,offsets[k]),WAVEFRONT_H(k,offsets[k]));
      dist_max = MAX(dist_max,dist);
    }
    wf_len = wavefront->hi-wavefront->lo+1;
  }
  // Memory used
  const uint64_t slab_size = wavefront_slab_get_size(wf_aligner->wavefront_slab);
  const uint64_t bt_buffer_used = (wf_components->bt_buffer) ?
      wf_backtrace_buffer_get_size_used(wf_components->bt_buffer) : 0;
  // Progress
  const float aligned_progress = (dist_max>=0) ? (100.0f*(float)dist_max/(float)dist_total) : -1.0f;
  const float million_offsets = (wf_len>=0) ? (float)wf_len/1000000.0f : -1.0f;
  // Print one-line status
  fprintf(stream,"[");
  wavefront_aligner_print_type(stream,wf_aligner);
  fprintf(stream,
      "] SequenceLength=(%d,%d) Score %d (~ %2.3f%% aligned). "
      "MemoryUsed(WF-Slab,BT-buffer)=(%lu MB,%lu MB). "
      "Wavefronts ~ %2.3f Moffsets\n",
      wf_aligner->pattern_length,wf_aligner->text_length,score,aligned_progress,
      CONVERT_B_TO_MB(slab_size),CONVERT_B_TO_MB(bt_buffer_used),million_offsets);
}