File: Wm5Culler.cpp

package info (click to toggle)
libwildmagic 5.13-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, jessie, jessie-kfreebsd, stretch
  • size: 89,572 kB
  • ctags: 26,264
  • sloc: cpp: 210,924; csh: 637; sh: 95; makefile: 36
file content (347 lines) | stat: -rw-r--r-- 10,994 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/05/01)

#include "Wm5GraphicsPCH.h"
#include "Wm5Culler.h"
using namespace Wm5;

//----------------------------------------------------------------------------
Culler::Culler (const Camera* camera)
    :
    mCamera(camera),
    mPlaneQuantity(6)
{
    // The data members mFrustum, mPlane, and mPlaneState are
    // uninitialized.  They are initialized in the GetVisibleSet call.
}
//----------------------------------------------------------------------------
Culler::~Culler ()
{
}
//----------------------------------------------------------------------------
void Culler::SetFrustum (const float* frustum)
{
    if (!mCamera)
    {
        assertion(false, "SetFrustum requires the existence of a camera\n");
        return;
    }

    // Copy the frustum values.
    mFrustum[Camera::VF_DMIN] = frustum[Camera::VF_DMIN];
    mFrustum[Camera::VF_DMAX] = frustum[Camera::VF_DMAX];
    mFrustum[Camera::VF_UMIN] = frustum[Camera::VF_UMIN];
    mFrustum[Camera::VF_UMAX] = frustum[Camera::VF_UMAX];
    mFrustum[Camera::VF_RMIN] = frustum[Camera::VF_RMIN];
    mFrustum[Camera::VF_RMAX] = frustum[Camera::VF_RMAX];

    float dMin2 = mFrustum[Camera::VF_DMIN]*mFrustum[Camera::VF_DMIN];
    float uMin2 = mFrustum[Camera::VF_UMIN]*mFrustum[Camera::VF_UMIN];
    float uMax2 = mFrustum[Camera::VF_UMAX]*mFrustum[Camera::VF_UMAX];
    float rMin2 = mFrustum[Camera::VF_RMIN]*mFrustum[Camera::VF_RMIN];
    float rMax2 = mFrustum[Camera::VF_RMAX]*mFrustum[Camera::VF_RMAX];

    // Get the camera coordinate frame.
    APoint position = mCamera->GetPosition();
    AVector dVector = mCamera->GetDVector();
    AVector uVector = mCamera->GetUVector();
    AVector rVector = mCamera->GetRVector();
    float dirDotEye = position.Dot(dVector);

    // Update the near plane.
    mPlane[Camera::VF_DMIN].SetNormal(dVector);
    mPlane[Camera::VF_DMIN].SetConstant(
        dirDotEye + mFrustum[Camera::VF_DMIN]);

    // Update the far plane.
    mPlane[Camera::VF_DMAX].SetNormal(-dVector);
    mPlane[Camera::VF_DMAX].SetConstant(
        -(dirDotEye + mFrustum[Camera::VF_DMAX]));

    // Update the bottom plane
    float invLength = Mathf::InvSqrt(dMin2 + uMin2);
    float c0 = -mFrustum[Camera::VF_UMIN]*invLength;  // D component
    float c1 = +mFrustum[Camera::VF_DMIN]*invLength;  // U component
    AVector normal = c0*dVector + c1*uVector;
    float constant = position.Dot(normal);
    mPlane[Camera::VF_UMIN].SetNormal(normal);
    mPlane[Camera::VF_UMIN].SetConstant(constant);

    // Update the top plane.
    invLength = Mathf::InvSqrt(dMin2 + uMax2);
    c0 = +mFrustum[Camera::VF_UMAX]*invLength;  // D component
    c1 = -mFrustum[Camera::VF_DMIN]*invLength;  // U component
    normal = c0*dVector + c1*uVector;
    constant = position.Dot(normal);
    mPlane[Camera::VF_UMAX].SetNormal(normal);
    mPlane[Camera::VF_UMAX].SetConstant(constant);

    // Update the left plane.
    invLength = Mathf::InvSqrt(dMin2 + rMin2);
    c0 = -mFrustum[Camera::VF_RMIN]*invLength;  // D component
    c1 = +mFrustum[Camera::VF_DMIN]*invLength;  // R component
    normal = c0*dVector + c1*rVector;
    constant = position.Dot(normal);
    mPlane[Camera::VF_RMIN].SetNormal(normal);
    mPlane[Camera::VF_RMIN].SetConstant(constant);

    // Update the right plane.
    invLength = Mathf::InvSqrt(dMin2 + rMax2);
    c0 = +mFrustum[Camera::VF_RMAX]*invLength;  // D component
    c1 = -mFrustum[Camera::VF_DMIN]*invLength;  // R component
    normal = c0*dVector + c1*rVector;
    constant = position.Dot(normal);
    mPlane[Camera::VF_RMAX].SetNormal(normal);
    mPlane[Camera::VF_RMAX].SetConstant(constant);

    // All planes are active initially.
    mPlaneState = 0xFFFFFFFF;
}
//----------------------------------------------------------------------------
void Culler::Insert (Spatial* visible)
{
    mVisibleSet.Insert(visible);
}
//----------------------------------------------------------------------------
bool Culler::IsVisible (const Bound& bound)
{
    if (bound.GetRadius() == 0.0f)
    {
        // The node is a dummy node and cannot be visible.
        return false;
    }

    // Start with the last pushed plane, which is potentially the most
    // restrictive plane.
    int index = mPlaneQuantity - 1;
    unsigned int mask = (1 << index);

    for (int i = 0; i < mPlaneQuantity; ++i, --index, mask >>= 1)
    {
        if (mPlaneState & mask)
        {
            int side = bound.WhichSide(mPlane[index]);

            if (side < 0)
            {
                // The object is on the negative side of the plane, so
                // cull it.
                return false;
            }

            if (side > 0)
            {
                // The object is on the positive side of plane.  There is
                // no need to compare subobjects against this plane, so
                // mark it as inactive.
                mPlaneState &= ~mask;
            }
        }
    }

    return true;
}
//----------------------------------------------------------------------------
bool Culler::IsVisible (int numVertices, const APoint* vertices,
    bool ignoreNearPlane)
{
    // The Boolean variable ignoreNearPlane should be set to 'true' when
    // the test polygon is a portal.  This avoids the situation when the
    // portal is in the view pyramid (eye+left/right/top/bottom), but is
    // between the eye and near plane.  In such a situation you do not want
    // the portal system to cull the portal.  This situation typically occurs
    // when the camera moves through the portal from current region to
    // adjacent region.

    // Start with the last pushed plane, which is potentially the most
    // restrictive plane.
    int index = mPlaneQuantity - 1;
    for (int i = 0; i < mPlaneQuantity; ++i, --index)
    {
        HPlane& plane = mPlane[index];
        if (ignoreNearPlane && index == Camera::VF_DMIN)
        {
            continue;
        }

        int j;
        for (j = 0; j < numVertices; ++j)
        {
            int side = plane.WhichSide(vertices[j]);
            if (side >= 0)
            {
                // The polygon is not totally outside this plane.
                break;
            }
        }

        if (j == numVertices)
        {
            // The polygon is totally outside this plane.
            return false;
        }
    }

    return true;
}
//----------------------------------------------------------------------------
int Culler::WhichSide (const HPlane& plane) const
{
    // The plane is N*(X-C) = 0 where the * indicates dot product.  The signed
    // distance from the camera location E to the plane is N*(E-C).
    float NdEmC = plane.DistanceTo(mCamera->GetPosition());

    AVector normal = plane.GetNormal();
    float NdD = normal.Dot(mCamera->GetDVector());
    float NdU = normal.Dot(mCamera->GetUVector());
    float NdR = normal.Dot(mCamera->GetRVector());
    float FdN = mFrustum[Camera::VF_DMAX]/mFrustum[Camera::VF_DMIN];

    int positive = 0, negative = 0;
    float sgnDist;

    // Check near-plane vertices.
    float PDMin = mFrustum[Camera::VF_DMIN]*NdD;
    float NUMin = mFrustum[Camera::VF_UMIN]*NdU;
    float NUMax = mFrustum[Camera::VF_UMAX]*NdU;
    float NRMin = mFrustum[Camera::VF_RMIN]*NdR;
    float NRMax = mFrustum[Camera::VF_RMAX]*NdR;

    // V = E + dmin*D + umin*U + rmin*R
    // N*(V-C) = N*(E-C) + dmin*(N*D) + umin*(N*U) + rmin*(N*R)
    sgnDist = NdEmC + PDMin + NUMin + NRMin;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmin*D + umin*U + rmax*R
    // N*(V-C) = N*(E-C) + dmin*(N*D) + umin*(N*U) + rmax*(N*R)
    sgnDist = NdEmC + PDMin + NUMin + NRMax;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmin*D + umax*U + rmin*R
    // N*(V-C) = N*(E-C) + dmin*(N*D) + umax*(N*U) + rmin*(N*R)
    sgnDist = NdEmC + PDMin + NUMax + NRMin;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmin*D + umax*U + rmax*R
    // N*(V-C) = N*(E-C) + dmin*(N*D) + umax*(N*U) + rmax*(N*R)
    sgnDist = NdEmC + PDMin + NUMax + NRMax;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // check far-plane vertices (s = dmax/dmin)
    float PDMax = mFrustum[Camera::VF_DMAX]*NdD;
    float FUMin = FdN*NUMin;
    float FUMax = FdN*NUMax;
    float FRMin = FdN*NRMin;
    float FRMax = FdN*NRMax;

    // V = E + dmax*D + umin*U + rmin*R
    // N*(V-C) = N*(E-C) + dmax*(N*D) + s*umin*(N*U) + s*rmin*(N*R)
    sgnDist = NdEmC + PDMax + FUMin + FRMin;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmax*D + umin*U + rmax*R
    // N*(V-C) = N*(E-C) + dmax*(N*D) + s*umin*(N*U) + s*rmax*(N*R)
    sgnDist = NdEmC + PDMax + FUMin + FRMax;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmax*D + umax*U + rmin*R
    // N*(V-C) = N*(E-C) + dmax*(N*D) + s*umax*(N*U) + s*rmin*(N*R)
    sgnDist = NdEmC + PDMax + FUMax + FRMin;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    // V = E + dmax*D + umax*U + rmax*R
    // N*(V-C) = N*(E-C) + dmax*(N*D) + s*umax*(N*U) + s*rmax*(N*R)
    sgnDist = NdEmC + PDMax + FUMax + FRMax;
    if (sgnDist > 0.0f)
    {
        positive++;
    }
    else if (sgnDist < 0.0f)
    {
        negative++;
    }

    if (positive > 0)
    {
        if (negative > 0)
        {
            // Frustum straddles the plane.
            return 0;
        }

        // Frustum is fully on the positive side.
        return +1;
    }

    // Frustum is fully on the negative side.
    return -1;
}
//----------------------------------------------------------------------------
void Culler::ComputeVisibleSet (Spatial* scene)
{
    if (mCamera && scene)
    {
        SetFrustum(mCamera->GetFrustum());
        mVisibleSet.Clear();
        scene->OnGetVisibleSet(*this, false);
    }
    else
    {
        assertion(false, "A camera and a scene are required for culling\n");
    }
}
//----------------------------------------------------------------------------