1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ConformalMap.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
ConformalMap<Real>::ConformalMap (int numPoints,
const Vector3<Real>* points, int numTriangles, const int* indices,
int punctureTriangle)
{
// Construct a vertex-triangle-edge representation of mesh.
BasicMesh mesh(numPoints, points, numTriangles, indices);
int numEdges = mesh.GetNumEdges();
const BasicMesh::Edge* edges = mesh.GetEdges();
const BasicMesh::Triangle* triangles = mesh.GetTriangles();
mPlanes = new1<Vector2<Real> >(numPoints);
mSpheres = new1<Vector3<Real> >(numPoints);
// Construct sparse matrix A nondiagonal entries.
typename LinearSystem<Real>::SparseMatrix AMat;
int i, e, t, v0, v1, v2;
Real value = (Real)0;
for (e = 0; e < numEdges; ++e)
{
const BasicMesh::Edge& edge = edges[e];
v0 = edge.V[0];
v1 = edge.V[1];
Vector3<Real> E0, E1;
const BasicMesh::Triangle& T0 = triangles[edge.T[0]];
for (i = 0; i < 3; ++i)
{
v2 = T0.V[i];
if (v2 != v0 && v2 != v1)
{
E0 = points[v0] - points[v2];
E1 = points[v1] - points[v2];
value = E0.Dot(E1)/E0.Cross(E1).Length();
}
}
const BasicMesh::Triangle& T1 = triangles[edge.T[1]];
for (i = 0; i < 3; ++i)
{
v2 = T1.V[i];
if (v2 != v0 && v2 != v1)
{
E0 = points[v0] - points[v2];
E1 = points[v1] - points[v2];
value += E0.Dot(E1)/E0.Cross(E1).Length();
}
}
value *= -(Real)0.5;
AMat[std::make_pair(v0, v1)] = value;
}
// Aonstruct sparse matrix A diagonal entries.
Real* tmp = new1<Real>(numPoints);
memset(tmp, 0, numPoints*sizeof(Real));
typename LinearSystem<Real>::SparseMatrix::iterator iter = AMat.begin();
typename LinearSystem<Real>::SparseMatrix::iterator end = AMat.end();
for (/**/; iter != end; ++iter)
{
v0 = iter->first.first;
v1 = iter->first.second;
value = iter->second;
assertion(v0 != v1, "Unexpected condition\n");
tmp[v0] -= value;
tmp[v1] -= value;
}
for (int v = 0; v < numPoints; ++v)
{
AMat[std::make_pair(v, v)] = tmp[v];
}
assertion(numPoints + numEdges == (int)AMat.size(),
"Mismatch in sizes\n");
// Construct column vector B (happens to be sparse).
const BasicMesh::Triangle& tri = triangles[punctureTriangle];
v0 = tri.V[0];
v1 = tri.V[1];
v2 = tri.V[2];
Vector3<Real> V0 = points[v0];
Vector3<Real> V1 = points[v1];
Vector3<Real> V2 = points[v2];
Vector3<Real> E10 = V1 - V0;
Vector3<Real> E20 = V2 - V0;
Vector3<Real> E12 = V1 - V2;
Vector3<Real> cross = E20.Cross(E10);
Real len10 = E10.Length();
Real invLen10 = ((Real)1)/len10;
Real twoArea = cross.Length();
Real invLenCross = ((Real)1)/twoArea;
Real invProd = invLen10*invLenCross;
Real re0 = -invLen10;
Real im0 = invProd*E12.Dot(E10);
Real re1 = invLen10;
Real im1 = invProd*E20.Dot(E10);
Real re2 = (Real)0;
Real im2 = -len10*invLenCross;
// Solve sparse system for real parts.
memset(tmp, 0, numPoints*sizeof(Real));
tmp[v0] = re0;
tmp[v1] = re1;
tmp[v2] = re2;
Real* result = new1<Real>(numPoints);
bool solved = LinearSystem<Real>().SolveSymmetricCG(numPoints, AMat, tmp,
result);
assertion(solved, "Failed to solve linear system\n");
WM5_UNUSED(solved);
for (i = 0; i < numPoints; ++i)
{
mPlanes[i].X() = result[i];
}
// Solve sparse system for imaginary parts.
memset(tmp, 0, numPoints*sizeof(Real));
tmp[v0] = -im0;
tmp[v1] = -im1;
tmp[v2] = -im2;
solved = LinearSystem<Real>().SolveSymmetricCG(numPoints, AMat, tmp,
result);
assertion(solved, "Failed to solve linear system\n");
for (i = 0; i < numPoints; ++i)
{
mPlanes[i].Y() = result[i];
}
delete1(tmp);
delete1(result);
// Scale to [-1,1]^2 for numerical conditioning in later steps.
Real fmin = mPlanes[0].X(), fmax = fmin;
for (i = 0; i < numPoints; i++)
{
if (mPlanes[i].X() < fmin)
{
fmin = mPlanes[i].X();
}
else if (mPlanes[i].X() > fmax)
{
fmax = mPlanes[i].X();
}
if (mPlanes[i].Y() < fmin)
{
fmin = mPlanes[i].Y();
}
else if (mPlanes[i].Y() > fmax)
{
fmax = mPlanes[i].Y();
}
}
Real halfRange = ((Real)0.5)*(fmax - fmin);
Real invHalfRange = ((Real)1)/halfRange;
for (i = 0; i < numPoints; ++i)
{
mPlanes[i].X() = -(Real)1 + invHalfRange*(mPlanes[i].X() - fmin);
mPlanes[i].Y() = -(Real)1 + invHalfRange*(mPlanes[i].Y() - fmin);
}
// Map plane points to sphere using inverse stereographic projection.
// The main issue is selecting a translation in (x,y) and a radius of
// the projection sphere. Both factors strongly influence the final
// result.
// Use the average as the south pole. The points tend to be clustered
// approximately in the middle of the conformally mapped punctured
// triangle, so the average is a good choice to place the pole.
Vector2<Real> origin((Real)0 ,(Real)0 );
for (i = 0; i < numPoints; ++i)
{
origin += mPlanes[i];
}
origin /= (Real)numPoints;
for (i = 0; i < numPoints; ++i)
{
mPlanes[i] -= origin;
}
mPlaneMin = mPlanes[0];
mPlaneMax = mPlanes[0];
for (i = 1; i < numPoints; ++i)
{
if (mPlanes[i].X() < mPlaneMin.X())
{
mPlaneMin.X() = mPlanes[i].X();
}
else if (mPlanes[i].X() > mPlaneMax.X())
{
mPlaneMax.X() = mPlanes[i].X();
}
if (mPlanes[i].Y() < mPlaneMin.Y())
{
mPlaneMin.Y() = mPlanes[i].Y();
}
else if (mPlanes[i].Y() > mPlaneMax.Y())
{
mPlaneMax.Y() = mPlanes[i].Y();
}
}
// Select the radius of the sphere so that the projected punctured
// triangle has an area whose fraction of total spherical area is the
// same fraction as the area of the punctured triangle to the total area
// of the original triangle mesh.
Real twoTotalArea = (Real)0;
for (t = 0; t < numTriangles; ++t)
{
const BasicMesh::Triangle& T0 = triangles[t];
const Vector3<Real>& V0 = points[T0.V[0]];
const Vector3<Real>& V1 = points[T0.V[1]];
const Vector3<Real>& V2 = points[T0.V[2]];
Vector3<Real> E0 = V1 - V0, E1 = V2 - V0;
twoTotalArea += E0.Cross(E1).Length();
}
mRadius = ComputeRadius(mPlanes[v0], mPlanes[v1], mPlanes[v2],
twoArea/twoTotalArea);
Real radiusSqr = mRadius*mRadius;
// Inverse stereographic projection to obtain sphere coordinates. The
// sphere is centered at the origin and has radius 1.
for (i = 0; i < numPoints; i++)
{
Real rSqr = mPlanes[i].SquaredLength();
Real mult = ((Real)1)/(rSqr + radiusSqr);
Real x = ((Real)2)*mult*radiusSqr*mPlanes[i].X();
Real y = ((Real)2)*mult*radiusSqr*mPlanes[i].Y();
Real z = mult*mRadius*(rSqr - radiusSqr);
mSpheres[i] = Vector3<Real>(x,y,z)/mRadius;
}
}
//----------------------------------------------------------------------------
template <typename Real>
ConformalMap<Real>::~ConformalMap ()
{
delete1(mPlanes);
delete1(mSpheres);
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>* ConformalMap<Real>::GetPlaneCoordinates () const
{
return mPlanes;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>& ConformalMap<Real>::GetPlaneMin () const
{
return mPlaneMin;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>& ConformalMap<Real>::GetPlaneMax () const
{
return mPlaneMax;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>* ConformalMap<Real>::GetSphereCoordinates () const
{
return mSpheres;
}
//----------------------------------------------------------------------------
template <typename Real>
Real ConformalMap<Real>::GetSphereRadius () const
{
return mRadius;
}
//----------------------------------------------------------------------------
template <typename Real>
Real ConformalMap<Real>::ComputeRadius (const Vector2<Real>& V0,
const Vector2<Real>& V1, const Vector2<Real>& V2, Real areaFraction)
const
{
Real r0Sqr = V0.SquaredLength();
Real r1Sqr = V1.SquaredLength();
Real r2Sqr = V2.SquaredLength();
Real diffR10 = r1Sqr - r0Sqr;
Real diffR20 = r2Sqr - r0Sqr;
Real diffX10 = V1.X() - V0.X();
Real diffY10 = V1.Y() - V0.Y();
Real diffX20 = V2.X() - V0.X();
Real diffY20 = V2.Y() - V0.Y();
Real diffRX10 = V1.X()*r0Sqr - V0.X()*r1Sqr;
Real diffRY10 = V1.Y()*r0Sqr - V0.Y()*r1Sqr;
Real diffRX20 = V2.X()*r0Sqr - V0.X()*r2Sqr;
Real diffRY20 = V2.Y()*r0Sqr - V0.Y()*r2Sqr;
Real c0 = diffR20*diffRY10 - diffR10*diffRY20;
Real c1 = diffR20*diffY10 - diffR10*diffY20;
Real d0 = diffR10*diffRX20 - diffR20*diffRX10;
Real d1 = diffR10*diffX20 - diffR20*diffX10;
Real e0 = diffRX10*diffRY20 - diffRX20*diffRY10;
Real e1 = diffRX10*diffY20 - diffRX20*diffY10;
Real e2 = diffX10*diffY20 - diffX20*diffY10;
Polynomial1<Real> poly0(6);
poly0[0] = (Real)0;
poly0[1] = (Real)0;
poly0[2] = e0*e0;
poly0[3] = c0*c0 + d0*d0 + ((Real)2)*e0*e1;
poly0[4] = ((Real)2)*(c0*c1 + d0*d1 + e0*e1) + e1*e1;
poly0[5] = c1*c1 + d1*d1 + ((Real)2)*e1*e2;
poly0[6] = e2*e2;
Polynomial1<Real> qpoly0(1), qpoly1(1), qpoly2(1);
qpoly0[0] = r0Sqr;
qpoly0[1] = (Real)1;
qpoly1[0] = r1Sqr;
qpoly1[1] = (Real)1;
qpoly2[0] = r2Sqr;
qpoly2[1] = (Real)1;
Real tmp = areaFraction*Math<Real>::PI;
Real amp = tmp*tmp;
Polynomial1<Real> poly1 = amp*qpoly0;
poly1 = poly1*qpoly0;
poly1 = poly1*qpoly0;
poly1 = poly1*qpoly0;
poly1 = poly1*qpoly1;
poly1 = poly1*qpoly1;
poly1 = poly1*qpoly2;
poly1 = poly1*qpoly2;
Polynomial1<Real> final = poly1 - poly0;
assertion(final.GetDegree() <= 8, "Unexpected condition\n");
// Bound a root near zero and apply bisection to find t.
Real tmin = (Real)0, fmin = final(tmin);
Real tmax = (Real)1, fmax = final(tmax);
assertion(fmin > (Real)0 && fmax < (Real)0, "Unexpected condition\n");
// Determine the number of iterations to get 'digits' of accuracy.
const int digits = 6;
Real tmp0 = Math<Real>::Log(tmax - tmin);
Real tmp1 = ((Real)digits)*Math<Real>::Log((Real)10);
Real arg = (tmp0 + tmp1)/Math<Real>::Log((Real)2);
int maxIter = (int)(arg + (Real)0.5);
Real tmid = (Real)0, fmid;
for (int i = 0; i < maxIter; ++i)
{
tmid = ((Real)0.5)*(tmin + tmax);
fmid = final(tmid);
Real product = fmid*fmin;
if (product < (Real)0)
{
tmax = tmid;
fmax = fmid;
}
else
{
tmin = tmid;
fmin = fmid;
}
}
Real radius = Math<Real>::Sqrt(tmid);
return radius;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class ConformalMap<float>;
template WM5_MATHEMATICS_ITEM
class ConformalMap<double>;
//----------------------------------------------------------------------------
}
|