1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "SimpleBumpMapEffect.h"
#include "Wm5PVWMatrixConstant.h"
using namespace Wm5;
WM5_IMPLEMENT_RTTI(Wm5, VisualEffect, SimpleBumpMapEffect);
WM5_IMPLEMENT_STREAM(SimpleBumpMapEffect);
WM5_IMPLEMENT_FACTORY(SimpleBumpMapEffect);
WM5_IMPLEMENT_DEFAULT_NAMES(VisualEffect, SimpleBumpMapEffect);
WM5_IMPLEMENT_DEFAULT_STREAM(VisualEffect, SimpleBumpMapEffect);
//----------------------------------------------------------------------------
SimpleBumpMapEffect::SimpleBumpMapEffect (const std::string& effectFile)
:
VisualEffect(effectFile)
{
// TODO: Once WmfxCompiler parses the Cg FX files, we will not need to
// set the sampler state.
PixelShader* pshader = GetPixelShader(0, 0);
// BaseSampler
pshader->SetFilter(0, Shader::SF_LINEAR_LINEAR);
pshader->SetCoordinate(0, 0, Shader::SC_REPEAT);
pshader->SetCoordinate(0, 1, Shader::SC_REPEAT);
// NormalSampler
pshader->SetFilter(1, Shader::SF_LINEAR_LINEAR);
pshader->SetCoordinate(1, 0, Shader::SC_REPEAT);
pshader->SetCoordinate(1, 1, Shader::SC_REPEAT);
}
//----------------------------------------------------------------------------
SimpleBumpMapEffect::~SimpleBumpMapEffect ()
{
}
//----------------------------------------------------------------------------
VisualEffectInstance* SimpleBumpMapEffect::CreateInstance (
Texture2D* baseTexture, Texture2D* normalTexture)
{
VisualEffectInstance* instance = new0 VisualEffectInstance(this, 0);
instance->SetVertexConstant(0, 0, new0 PVWMatrixConstant());
instance->SetPixelTexture(0, 0, baseTexture);
instance->SetPixelTexture(0, 1, normalTexture);
return instance;
}
//----------------------------------------------------------------------------
void SimpleBumpMapEffect::ComputeLightVectors (Triangles* mesh,
const AVector& worldLightDirection)
{
// The tangent-space coordinates for the light direction vector at each
// vertex is stored in the color0 channel. The computations use the
// vertex normals and the texture coordinates for the base mesh, which
// are stored in the tcoord0 channel. Thus, the mesh must have positions,
// normals, colors (unit 0), and texture coordinates (unit 0).
// The light direction D is in world-space coordinates. Negate it,
// transform it to model-space coordinates, and then normalize it. The
// world-space direction is unit-length, but the geometric primitive
// might have non-unit scaling in its model-to-world transformation, in
// which case the normalization is necessary.
AVector modelLightDirection =
-mesh->WorldTransform.Inverse()*worldLightDirection;
// Set the light vectors to (0,0,0) as a flag that the quantity has not
// yet been computed. The probability that a light vector is actually
// (0,0,0) should be small, so the flag system should save computation
// time overall.
VertexBufferAccessor vba(mesh);
Float3 black(0.0f, 0.0f, 0.0f);
int i;
for (i = 0; i < vba.GetNumVertices(); ++i)
{
vba.Color<Float3>(0, i) = black;
}
int numTriangles = mesh->GetNumTriangles();
for (int t = 0; t < numTriangles; ++t)
{
// Get the triangle vertices and attributes.
int v0, v1, v2;
if (!mesh->GetTriangle(t, v0, v1, v2))
{
continue;
}
APoint position[3] =
{
vba.Position<Float3>(v0),
vba.Position<Float3>(v1),
vba.Position<Float3>(v2)
};
AVector normal[3] =
{
vba.Normal<Float3>(v0),
vba.Normal<Float3>(v1),
vba.Normal<Float3>(v2)
};
Float3* color[3] =
{
&vba.Color<Float3>(0, v0),
&vba.Color<Float3>(0, v1),
&vba.Color<Float3>(0, v2)
};
Float2 tcoord[3] =
{
vba.TCoord<Float2>(0, v0),
vba.TCoord<Float2>(0, v1),
vba.TCoord<Float2>(0, v2)
};
for (i = 0; i < 3; ++i)
{
Float3& colorref = *color[i];
if (colorref != black)
{
continue;
}
int iP = (i == 0) ? 2 : i - 1;
int iN = (i + 1) % 3;
AVector tangent;
if (!ComputeTangent(position[i], tcoord[i], position[iN],
tcoord[iN], position[iP], tcoord[iP], tangent))
{
// The texture coordinate mapping is not properly defined for
// this. Just say that the tangent space light vector points
// in the same direction as the surface normal.
colorref[0] = normal[i][0];
colorref[1] = normal[i][1];
colorref[2] = normal[i][2];
continue;
}
// Project T into the tangent plane by projecting out the surface
// normal N, and then make it unit length.
tangent -= normal[i].Dot(tangent)*(normal[i]);
tangent.Normalize();
// Compute the bitangent B, another tangent perpendicular to T.
AVector bitangent = normal[i].UnitCross(tangent);
// The set {T,B,N} is a right-handed orthonormal set. The
// negated light direction U = -D is represented in this
// coordinate system as
// U = Dot(U,T)*T + Dot(U,B)*B + Dot(U,N)*N
float dotUT = modelLightDirection.Dot(tangent);
float dotUB = modelLightDirection.Dot(bitangent);
float dotUN = modelLightDirection.Dot(normal[i]);
// Transform the light vector into [0,1]^3 to make it a valid
// Float3 object.
colorref[0] = 0.5f*(dotUT + 1.0f);
colorref[1] = 0.5f*(dotUB + 1.0f);
colorref[2] = 0.5f*(dotUN + 1.0f);
}
}
}
//----------------------------------------------------------------------------
bool SimpleBumpMapEffect::ComputeTangent (const APoint& position0,
const Float2& tcoord0, const APoint& position1, const Float2& tcoord1,
const APoint& position2, const Float2& tcoord2, AVector& tangent)
{
// Compute the change in positions at the vertex P0.
AVector deltaPos1 = position1 - position0;
AVector deltaPos2 = position2 - position0;
if (Mathf::FAbs(deltaPos1.Length()) < Mathf::ZERO_TOLERANCE
|| Mathf::FAbs(deltaPos2.Length()) < Mathf::ZERO_TOLERANCE)
{
// The triangle is very small, call it degenerate.
return false;
}
// Compute the change in texture coordinates at the vertex P0 in the
// direction of edge P1-P0.
float du1 = tcoord1[0] - tcoord0[0];
float dv1 = tcoord1[1] - tcoord0[1];
if (Mathf::FAbs(dv1) < Mathf::ZERO_TOLERANCE)
{
// The triangle effectively has no variation in the v texture
// coordinate.
if (Mathf::FAbs(du1) < Mathf::ZERO_TOLERANCE)
{
// The triangle effectively has no variation in the u coordinate.
// Since the texture coordinates do not vary on this triangle,
// treat it as a degenerate parametric surface.
return false;
}
// The variation is effectively all in u, so set the tangent vector
// to be T = dP/du.
tangent = deltaPos1/du1;
return true;
}
// Compute the change in texture coordinates at the vertex P0 in the
// direction of edge P2-P0.
float du2 = tcoord2[0] - tcoord0[0];
float dv2 = tcoord2[1] - tcoord0[1];
float det = dv1*du2 - dv2*du1;
if (Mathf::FAbs(det) < Mathf::ZERO_TOLERANCE)
{
// The triangle vertices are collinear in parameter space, so treat
// this as a degenerate parametric surface.
return false;
}
// The triangle vertices are not collinear in parameter space, so choose
// the tangent to be dP/du = (dv1*dP2-dv2*dP1)/(dv1*du2-dv2*du1)
tangent = (dv1*deltaPos2 - dv2*deltaPos1)/det;
return true;
}
//----------------------------------------------------------------------------
|