File: Wm5Binary2D.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 90,112 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 39
file content (917 lines) | stat: -rw-r--r-- 31,036 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.3 (2015/11/21)

#include "Wm5ImagicsPCH.h"
#include "Wm5Binary2D.h"
using namespace Wm5;

//----------------------------------------------------------------------------
// Extraction of boundary from binary objects in image.
//
// Directions are:  W=0, NW=1, N=2, NE=3, E=4, SE=5, S=6, SW=7.  If a pixel
// was reached from the direction indicated, then its eight neighbors are
// searched in the order shown:
//
//     W      NW     N      NE     E      SE     S      SW
//     0 1 2  7 0 1  6 7 0  5 6 7  4 5 6  3 4 5  2 3 4  1 2 3
//     7 * 3  6 * 2  5 * 1  4 * 0  3 * 7  2 * 6  1 * 5  0 * 4
//     6 5 4  5 4 3  4 3 2  3 2 1  2 1 0  1 0 7  0 7 6  7 6 5
//
// The formula for the next direction is:  newdir = (index+5+olddir) MOD 8
// where index is the number of the neighbor in the search.  For example, in
// the configuration,
//
//   010
//   010
//   001
//
// suppose the center pixel was reached from the North (olddir=2).  Neighbors
// at index=0 and index=1 are zero.  The first nonzero neighbor is at index=2.
// Thus, newdir = (2+5+2) MOD 8 = 1, so the direction from which the next
// pixel is reached is NorthWest.
//
// One-pixel thick structures are treated as having more thickness in the
// sense that they are traversed twice, once per "side".
//----------------------------------------------------------------------------
void Binary2D::GetBoundaries (ImageInt2D& image,
    std::vector<IndexArray>& boundaries)
{
    // Background pixels are 0 and foreground pixels are 1.  Set the interior
    // foreground pixels to 2 and the boundary pixels to 3.  A 3 indicates
    // the boundary pixel has not yet been included in a boundary find.
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);
    const int bound0m1 = bound0 - 1;
    const int bound1m1 = bound1 - 1;
    int x, y;
    for (y = 1; y < bound1m1; ++y)
    {
        for (x = 1; x < bound0m1; ++x)
        {
            if (image(x, y) != 0)
            {
                if (image(x-1, y) != 0 && image(x+1, y) != 0
                &&  image(x, y-1) != 0 && image(x, y+1) != 0)
                {
                    image(x, y) = 2;
                }
                else
                {
                    image(x, y) = 3;
                }
            }
        }
    }

    // Search image for boundary points and extract the full boundaries.
    for (y = 1; y < bound1m1; ++y)
    {
        for (x = 0; x < bound0m1; ++x)
        {
            if (image(x, y) == 3)
            {
                boundaries.push_back(std::vector<int>());
                ExtractBoundary(x, y, image, boundaries.back());
            }
        }
    }
}
//----------------------------------------------------------------------------
void Binary2D::ExtractBoundary (int x0, int y0, ImageInt2D& image,
    IndexArray& boundary)
{
    // Incremental 2D offsets for 8-connected neighborhood of (x,y).
    const int dx[8] = { -1,  0, +1, +1, +1,  0, -1, -1 };
    const int dy[8] = { -1, -1, -1,  0, +1, +1, +1,  0 };

    // Insert the initial boundary point.
    boundary.push_back(image.GetIndex(x0, y0));

    // Compute the direction from background (0) to boundary pixel (1).
    int cx = x0, cy = y0;
    int nx = 0, ny = 0, dir;
    for (dir = 0; dir < 8; ++dir)
    {
        nx = cx + dx[dir];
        ny = cy + dy[dir];
        if (image(nx, ny) == 0)
        {
            dir = (dir + 1) % 8;
            break;
        }
    }

    // Traverse boundary in clockwise order.  Mark visited pixels with 1.
    image(cx, cy) = 1;
    bool notDone = true;
    while (notDone)
    {
        int i, nbr;
        for (i = 0, nbr = dir; i < 8; ++i, nbr = (nbr + 1) % 8)
        {
            nx = cx + dx[nbr];
            ny = cy + dy[nbr];
            if (image(nx, ny))
            {
                // The next boundary pixel was found.
                break;
            }
        }

        if (i == 8)
        {
            // (cx,cy) is an isolated pixel.
            notDone = false;
            continue;
        }

        if (nx == x0 && ny == y0)
        {
            // The boundary traversal is completed.
            notDone = false;
            continue;
        }

        // (nx,ny) is the next boundary point, so add the pixel to the list.
        boundary.push_back(image.GetIndex(nx, ny));

        // Mark visited pixels with 1.
        image(nx, ny) = 1;

        // Start the search for the next boundary point.
        cx = nx;
        cy = ny;
        dir = (i + 5 + dir) % 8;
    }
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Connected component labeling.  The algorithm is simply a nonrecursive
// depth-first search of the graph.
//----------------------------------------------------------------------------
void Binary2D::GetComponents8 (ImageInt2D& image, bool storeZeros,
    std::vector<IndexArray>& components)
{
    // Incremental 1D offsets for 8-connected neighbors.  Store +1 and -1
    // first to be cache friendly during the depth-first search.
    const int bound0 = image.GetBound(0);
    const int delta[8] =
    {
        +1,
        -1,
        -1 - bound0,
           - bound0,
        +1 - bound0,
        -1 + bound0,
           + bound0,
        +1 + bound0
    };

    GetComponents(8, delta, storeZeros, image, components);
}
//----------------------------------------------------------------------------
void Binary2D::GetComponents4 (ImageInt2D& image, bool storeZeros,
    std::vector<IndexArray>& components)
{
    // Incremental 1D offsets for 8-connected neighbors.  Store +1 and -1
    // first to be cache friendly during the depth-first search.
    const int bound0 = image.GetBound(0);
    const int delta[4] =
    {
        +1,
        -1,
        -bound0,
        bound0
    };

    GetComponents(4, delta, storeZeros, image, components);
}
//----------------------------------------------------------------------------
void Binary2D::GetComponents (const int numNeighbors, const int delta[],
    bool storeZeros, ImageInt2D& image, std::vector<IndexArray>& components)
{
    const int numPixels = image.GetQuantity();
    int* numElements = new1<int>(numPixels);
    int i, numComponents = 0, label = 2;
    int* vstack = new1<int>(numPixels);
    for (i = 0; i < numPixels; ++i)
    {
        if (image[i] == 1)
        {
            int top = -1;
            vstack[++top] = i;

            int& count = numElements[numComponents + 1];
            count = 0;
            while (top >= 0)
            {
                int v = vstack[top];
                image[v] = -1;
                int j;
                for (j = 0; j < numNeighbors; ++j)
                {
                    int adj = v + delta[j];
                    if (image[adj] == 1)
                    {
                        vstack[++top] = adj;
                        break;
                    }
                }
                if (j == numNeighbors)
                {
                    image[v] = label;
                    ++count;
                    --top;
                }
            }

            ++numComponents;
            ++label;
        }
    }
    delete1(vstack);

    if (storeZeros)
    {
        if (numComponents > 0)
        {
            int numZeros = numPixels;
            components.resize(numComponents + 1);
            for (i = 1; i <= numComponents; ++i)
            {
                int count = numElements[i];
                components[i].resize(count);
                numZeros -= count;
                numElements[i] = 0;
            }
            components[0].resize(numZeros);
            numZeros = 0;
            int* zeros = &components[0][0];

            for (i = 0; i < numPixels; ++i)
            {
                int value = image[i];
                if (value != 0)
                {
                    // Labels started at 2 to support the depth-first search,
                    // so they need to be decremented for the correct labels.
                    image[i] = --value;
                    components[value][numElements[value]] = i;
                    ++numElements[value];
                }
                else
                {
                    zeros[numZeros++] = i;
                }
            }
        }
        else
        {
            components.resize(1);
            components[0].resize(numPixels);
            int* zeros = &components[0][0];
            for (i = 0; i < numPixels; ++i)
            {
                zeros[i] = i;
            }
        }
    }
    else
    {
        if (numComponents > 0)
        {
            components.resize(numComponents + 1);
            for (i = 1; i <= numComponents; ++i)
            {
                components[i].resize(numElements[i]);
                numElements[i] = 0;
            }

            for (i = 0; i < numPixels; ++i)
            {
                int value = image[i];
                if (value != 0)
                {
                    // Labels started at 2 to support the depth-first search,
                    // so they need to be decremented for the correct labels.
                    image[i] = --value;
                    components[value][numElements[value]] = i;
                    ++numElements[value];
                }
            }
        }
    }
    delete1(numElements);
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// L1 Distance Transform.
//
// This distance is also known as the "city block" distance or whatever.
// North, South, East, and West neighbors are 1 unit away.  NorthWest,
// NorthEast, SouthWest, and SouthEast neighbors are 2 units away.
//----------------------------------------------------------------------------
void Binary2D::GetL1Distance (ImageInt2D& image, int& maxDistance)
{
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);
    const int bound0m1 = bound0 - 1;
    const int bound1m1 = bound1 - 1;

    // Use a grass-fire approach, computing distance from boundary to
    // interior one pass at a time.
    bool changeMade = true;
    int distance;
    for (distance = 1; changeMade; ++distance)
    {
        changeMade = false;
        int distanceP1 = distance + 1;
        for (int y = 1; y < bound1m1; ++y)
        {
            for (int x = 1; x < bound0m1; ++x)
            {
                if (image(x, y) == distance)
                {
                    if (image(x-1, y) >= distance
                    &&  image(x+1, y) >= distance
                    &&  image(x, y-1) >= distance
                    &&  image(x, y+1) >= distance)
                    {
                        image(x, y) = distanceP1;
                        changeMade = true;
                    }
                }
            }
        }
    }
    maxDistance = distance;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// L2 Distance Transform (Euclidean Distance Transform)
//
// This program calculates the Euclidean distance transform of a binary
// input image.  The adaptive algorithm is guaranteed to give exact
// distances for all distances < 100.  Algorithm sent to me by John Gauch.
//
// From John Gauch at University of Kansas:
// The basic idea is similar to a EDT described recently in PAMI by Laymarie
// from McGill.  By keeping the dx and dy offset to the nearest edge (feature)
// point in the image, we can search to see which dx dy is closest to a given
// point by examining a set of neighbors.  The Laymarie method (and Borgfors)
// look at a fixed 3x3 or 5x5 neighborhood and call it a day.  What we did was
// calculate (painfully) what neighborhoods you need to look at to guarentee
// that the exact distance is obtained.  Thus, you will see in the code, that
// we L2Check the current distance and depending on what we have so far, we
// extend the search region.  Since our algorithm for L2Checking the exactness
// of each neighborhood is on the order N^4, we have only gone to N=100.  In
// theory, you could make this large enough to get all distances exact.  We
// have implemented the algorithm to get all distances < 100 to be exact. 
//----------------------------------------------------------------------------
void Binary2D::GetL2Distance (const ImageInt2D& image, double& maxDistance,
    ImageDouble2D& transform)
{
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);
    const int bound0m1 = bound0 - 1;
    const int bound1m1 = bound1 - 1;
    int x, y, distance;

    // Create and initialize intermediate images.
    ImageInt2D xNear(bound0, bound1);
    ImageInt2D yNear(bound0, bound1);
    ImageInt2D dist(bound0, bound1);
    for (y = 0; y < bound1; ++y)
    {
        for (x = 0; x < bound0; ++x)
        {
            if (image(x, y) != 0)
            {
                xNear(x, y) = 0;
                yNear(x, y) = 0;
                dist(x, y) = INT_MAX;
            }
            else
            {
                xNear(x, y) = x;
                yNear(x, y) = y;
                dist(x, y) = 0;
            }
        }
    }

    const int K1 = 1;
    const int K2 = 169;   // 13^2
    const int K3 = 961;   // 31^2
    const int K4 = 2401;  // 49^2
    const int K5 = 5184;  // 72^2

    // Pass in the ++ direction.
    for (y = 0; y < bound1; ++y)
    {
        for (x = 0; x < bound0; ++x)
        {
            distance = dist(x, y);
            if (distance > K1)
            { 
                L2Check(x, y, -1,  0, xNear, yNear, dist); 
                L2Check(x, y, -1, -1, xNear, yNear, dist); 
                L2Check(x, y,  0, -1, xNear, yNear, dist); 
            }
            if (distance > K2)
            { 
                L2Check(x, y, -2, -1, xNear, yNear, dist); 
                L2Check(x, y, -1, -2, xNear, yNear, dist); 
            }
            if (distance > K3)
            { 
                L2Check(x, y, -3, -1, xNear, yNear, dist); 
                L2Check(x, y, -3, -2, xNear, yNear, dist); 
                L2Check(x, y, -2, -3, xNear, yNear, dist); 
                L2Check(x, y, -1, -3, xNear, yNear, dist); 
            }
            if (distance > K4)
            { 
                L2Check(x, y, -4, -1, xNear, yNear, dist); 
                L2Check(x, y, -4, -3, xNear, yNear, dist); 
                L2Check(x, y, -3, -4, xNear, yNear, dist); 
                L2Check(x, y, -1, -4, xNear, yNear, dist); 
            }
            if (distance > K5)
            { 
                L2Check(x, y, -5, -1, xNear, yNear, dist); 
                L2Check(x, y, -5, -2, xNear, yNear, dist); 
                L2Check(x, y, -5, -3, xNear, yNear, dist); 
                L2Check(x, y, -5, -4, xNear, yNear, dist);
                L2Check(x, y, -4, -5, xNear, yNear, dist); 
                L2Check(x, y, -2, -5, xNear, yNear, dist); 
                L2Check(x, y, -3, -5, xNear, yNear, dist); 
                L2Check(x, y, -1, -5, xNear, yNear, dist); 
            }
        }
    }

    // Pass in -- direction.
    for (y = bound1m1; y >= 0; --y)
    {
        for (x = bound0m1; x >= 0; --x)
        {
            distance = dist(x, y);
            if (distance > K1)
            { 
                L2Check(x, y, 1, 0, xNear, yNear, dist); 
                L2Check(x, y, 1, 1, xNear, yNear, dist); 
                L2Check(x, y, 0, 1, xNear, yNear, dist); 
            }
            if (distance > K2)
            { 
                L2Check(x, y, 2, 1, xNear, yNear, dist); 
                L2Check(x, y, 1, 2, xNear, yNear, dist); 
            }
            if (distance > K3)
            { 
                L2Check(x, y, 3, 1, xNear, yNear, dist); 
                L2Check(x, y, 3, 2, xNear, yNear, dist); 
                L2Check(x, y, 2, 3, xNear, yNear, dist); 
                L2Check(x, y, 1, 3, xNear, yNear, dist); 
            }
            if (distance > K4)
            { 
                L2Check(x, y, 4, 1, xNear, yNear, dist); 
                L2Check(x, y, 4, 3, xNear, yNear, dist); 
                L2Check(x, y, 3, 4, xNear, yNear, dist); 
                L2Check(x, y, 1, 4, xNear, yNear, dist); 
            }
            if (distance > K5)
            { 
                L2Check(x, y, 5, 1, xNear, yNear, dist); 
                L2Check(x, y, 5, 2, xNear, yNear, dist); 
                L2Check(x, y, 5, 3, xNear, yNear, dist); 
                L2Check(x, y, 5, 4, xNear, yNear, dist);
                L2Check(x, y, 4, 5, xNear, yNear, dist); 
                L2Check(x, y, 2, 5, xNear, yNear, dist); 
                L2Check(x, y, 3, 5, xNear, yNear, dist); 
                L2Check(x, y, 1, 5, xNear, yNear, dist); 
            }
        }
    }

    // Pass in the +- direction.
    for (y = bound1m1; y >= 0; --y)
    {
        for (x = 0; x < bound0; ++x)
        {
            distance = dist(x, y);
            if (distance > K1)
            { 
                L2Check(x, y, -1, 0, xNear, yNear, dist); 
                L2Check(x, y, -1, 1, xNear, yNear, dist); 
                L2Check(x, y,  0, 1, xNear, yNear, dist); 
            }
            if (distance > K2)
            { 
                L2Check(x, y, -2, 1, xNear, yNear, dist); 
                L2Check(x, y, -1, 2, xNear, yNear, dist); 
            }
            if (distance > K3)
            { 
                L2Check(x, y, -3, 1, xNear, yNear, dist); 
                L2Check(x, y, -3, 2, xNear, yNear, dist); 
                L2Check(x, y, -2, 3, xNear, yNear, dist); 
                L2Check(x, y, -1, 3, xNear, yNear, dist); 
            }
            if (distance > K4)
            { 
                L2Check(x, y, -4, 1, xNear, yNear, dist); 
                L2Check(x, y, -4, 3, xNear, yNear, dist); 
                L2Check(x, y, -3, 4, xNear, yNear, dist); 
                L2Check(x, y, -1, 4, xNear, yNear, dist); 
            }
            if (distance > K5)
            { 
                L2Check(x, y, -5, 1, xNear, yNear, dist); 
                L2Check(x, y, -5, 2, xNear, yNear, dist); 
                L2Check(x, y, -5, 3, xNear, yNear, dist); 
                L2Check(x, y, -5, 4, xNear, yNear, dist);
                L2Check(x, y, -4, 5, xNear, yNear, dist); 
                L2Check(x, y, -2, 5, xNear, yNear, dist); 
                L2Check(x, y, -3, 5, xNear, yNear, dist); 
                L2Check(x, y, -1, 5, xNear, yNear, dist); 
            }
        }
    }

    // Pass in the -+ direction.
    for (y = 0; y < bound1; ++y)
    {
        for (x = bound0m1; x >= 0; --x)
        {
            distance = dist(x, y);
            if (distance > K1)
            { 
                L2Check(x, y, 1,  0, xNear, yNear, dist); 
                L2Check(x, y, 1, -1, xNear, yNear, dist); 
                L2Check(x, y, 0, -1, xNear, yNear, dist); 
            }
            if (distance > K2)
            { 
                L2Check(x, y, 2, -1, xNear, yNear, dist); 
                L2Check(x, y, 1, -2, xNear, yNear, dist); 
            }
            if (distance > K3)
            { 
                L2Check(x, y, 3, -1, xNear, yNear, dist); 
                L2Check(x, y, 3, -2, xNear, yNear, dist); 
                L2Check(x, y, 2, -3, xNear, yNear, dist); 
                L2Check(x, y, 1, -3, xNear, yNear, dist); 
            }
            if (distance > K4)
            { 
                L2Check(x, y, 4, -1, xNear, yNear, dist); 
                L2Check(x, y, 4, -3, xNear, yNear, dist); 
                L2Check(x, y, 3, -4, xNear, yNear, dist); 
                L2Check(x, y, 1, -4, xNear, yNear, dist); 
            }
            if (distance > K5)
            { 
                L2Check(x, y, 5, -1, xNear, yNear, dist); 
                L2Check(x, y, 5, -2, xNear, yNear, dist); 
                L2Check(x, y, 5, -3, xNear, yNear, dist); 
                L2Check(x, y, 5, -4, xNear, yNear, dist);
                L2Check(x, y, 4, -5, xNear, yNear, dist); 
                L2Check(x, y, 2, -5, xNear, yNear, dist); 
                L2Check(x, y, 3, -5, xNear, yNear, dist); 
                L2Check(x, y, 1, -5, xNear, yNear, dist); 
            }
        }
    }

    maxDistance = 0.0;
    for (y = 0; y < bound1; ++y)
    {
        for (x = 0; x < bound0; ++x)
        {
            double ddistance = sqrt((double)dist(x, y));
            if (ddistance > maxDistance)
            {
                maxDistance = ddistance;
            }
            transform(x, y) = ddistance;
        }
    }
}
//----------------------------------------------------------------------------
void Binary2D::L2Check (int x, int y, int dx, int dy, ImageInt2D& xNear,
    ImageInt2D& yNear, ImageInt2D& dist)
{
    const int bound0 = dist.GetBound(0);
    const int bound1 = dist.GetBound(1);
    int xp = x + dx, yp = y + dy;
    if (0 <= xp && xp < bound0 && 0 <= yp && yp < bound1)
    {
        if (dist(xp, yp) < dist(x, y))
        {
            int dx0 = xNear(xp, yp) - x;
            int dy0 = yNear(xp, yp) - y;
            int newDist = dx0*dx0 + dy0*dy0;
            if (newDist < dist(x, y))
            {
                xNear(x, y) = xNear(xp, yp);
                yNear(x, y) = yNear(xp, yp);
                dist(x, y) = newDist;
            }
        }
    }
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Skeletonization.
//
// Boundary pixels are trimmed from the object one layer at a time based on
// their adjacency to interior pixels.  At each step the connectivity and
// cycles of the object are preserved.
//----------------------------------------------------------------------------
void Binary2D::GetSkeleton (ImageInt2D& image)
{
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);

    // Trim pixels, mark interior as 4.
    bool notDone = true;
    while (notDone)
    {
        if (MarkInterior(image, 4, Interior4))
        {
            // No interior pixels, trimmed set is at most 2-pixels thick.
            notDone = false;
            continue;
        }

        if (ClearInteriorAdjacent(image, 4))
        {
            // All remaining interior pixels are either articulation points
            // or part of blobs whose boundary pixels are all articulation
            // points.  An example of the latter case is shown below.  The
            // background pixels are marked with '.' rather than '0' for
            // readability.  The interior pixels are marked with '4' and the
            // boundary pixels are marked with '1'.
            //
            //   .........
            //   .....1...
            //   ..1.1.1..
            //   .1.141...
            //   ..14441..
            //   ..1441.1.
            //   .1.11.1..
            //   ..1..1...
            //   .........
            //
            // This is a pathological problem where there are many small holes
            // (0-pixel with north, south, west, and east neighbors all
            // 1-pixels) that your application can try to avoid by an initial
            // pass over the image to fill in such holes.  Of course, you do
            // have problems with checkerboard patterns...
            notDone = false;
            continue;
        }
    }

    // Trim pixels, mark interior as 3.
    notDone = true;
    while (notDone)
    {
        if (MarkInterior(image, 3, Interior3))
        {
            // No interior pixels, trimmed set is at most 2-pixels thick.
            notDone = false;
            continue;
        }

        if (ClearInteriorAdjacent(image, 3))
        {
            // All remaining 3-values can be safely removed since they are
            // not articulation points and the removal will not cause new
            // holes.
            for (int y = 0; y < bound1; ++y)
            {
                for (int x = 0; x < bound0; ++x)
                {
                    if (image(x, y) == 3 && !IsArticulation(image, x, y))
                    {
                        image(x, y) = 0;
                    }
                }
            }
            notDone = false;
            continue;
        }
    }

    // Trim pixels, mark interior as 2.
    notDone = true;
    while (notDone)
    {
        if (MarkInterior(image, 2, Interior2))
        {
            // No interior pixels, trimmed set is at most 1-pixel thick.
            // Call it a skeleton.
            notDone = false;
            continue;
        }

        if (ClearInteriorAdjacent(image, 2))
        {
            // Removes 2-values that are not articulation points.
            for (int y = 0; y < bound1; ++y)
            {
                for (int x = 0; x < bound0; ++x)
                {
                    if (image(x, y) == 2 && !IsArticulation(image, x, y))
                    {
                        image(x, y) = 0;
                    }
                }
            }
            notDone = false;
            continue;
        }
    }

    // Make the skeleton a binary image.
    for (int i = 0; i < image.GetQuantity(); ++i)
    {
        if (image[i] != 0)
        {
            image[i] = 1;
        }
    }
}
//----------------------------------------------------------------------------
bool Binary2D::Interior4 (ImageInt2D& image, int x, int y)
{
    return image(x-1, y) != 0
        && image(x+1, y) != 0
        && image(x, y-1) != 0
        && image(x, y+1) != 0;
}
//----------------------------------------------------------------------------
bool Binary2D::Interior3 (ImageInt2D& image, int x, int y)
{
    int numNeighbors = 0;
    if (image(x-1, y) != 0)
    {
        ++numNeighbors;
    }
    if (image(x+1, y) != 0)
    {
        ++numNeighbors;
    }
    if (image(x, y-1) != 0)
    {
        ++numNeighbors;
    }
    if (image(x, y+1) != 0)
    {
        ++numNeighbors;
    }
    return numNeighbors == 3;
}
//----------------------------------------------------------------------------
bool Binary2D::Interior2 (ImageInt2D& image, int x, int y)
{
    bool b1 = (image(x, y-1) != 0);
    bool b3 = (image(x+1, y) != 0);
    bool b5 = (image(x, y+1) != 0);
    bool b7 = (image(x-1, y) != 0);
    return (b1 && b3) || (b3 && b5) || (b5 && b7) || (b7 && b1);
}
//----------------------------------------------------------------------------
bool Binary2D::MarkInterior (ImageInt2D& image, int value,
    InteriorFunction function)
{
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);
    bool noInterior = true;
    for (int y = 0; y < bound1; ++y)
    {
        for (int x = 0; x < bound0; ++x)
        {
            if (image(x, y) > 0)
            {
                if (function(image, x, y))
                {
                    image(x, y) = value;
                    noInterior = false;
                }
                else
                {
                    image(x, y) = 1;
                }
            }
        }
    }
    return noInterior;
}
//----------------------------------------------------------------------------
bool Binary2D::IsArticulation (ImageInt2D& image, int x, int y)
{
    // Converts 8 neighbors of pixel (x,y) to an 8-bit value, bit = 1 iff
    // pixel is set.
    int byteMask = 0;
    if (image(x-1, y-1) != 0)
    {
        byteMask |= 0x01;
    }
    if (image(x, y-1) != 0)
    {
        byteMask |= 0x02;
    }
    if (image(x+1, y-1) != 0)
    {
        byteMask |= 0x04;
    }
    if (image(x+1, y) != 0)
    {
        byteMask |= 0x08;
    }
    if (image(x+1, y+1) != 0)
    {
        byteMask |= 0x10;
    }
    if (image(x, y+1) != 0)
    {
        byteMask |= 0x20;
    }
    if (image(x-1, y+1) != 0)
    {
        byteMask |= 0x40;
    }
    if (image(x-1, y) != 0)
    {
        byteMask |= 0x80;
    }

    return msArticulation[byteMask] == 1;
}
//----------------------------------------------------------------------------
bool Binary2D::ClearInteriorAdjacent (ImageInt2D& image, int value)
{
    const int bound0 = image.GetBound(0);
    const int bound1 = image.GetBound(1);
    bool noRemoval = true;
    for (int y = 0; y < bound1; y++)
    {
        for (int x = 0; x < bound0; x++)
        {
            if (image(x,y) == 1)
            {
                bool interiorAdjacent =
                    image(x-1, y-1) == value ||
                    image(x  , y-1) == value ||
                    image(x+1, y-1) == value ||
                    image(x+1, y  ) == value ||
                    image(x+1, y+1) == value ||
                    image(x  , y+1) == value ||
                    image(x-1, y+1) == value ||
                    image(x-1, y  ) == value;

                if (interiorAdjacent && !IsArticulation(image, x, y))
                {
                    image(x, y) = 0;
                    noRemoval = false;
                }
            }
        }
    }
    return noRemoval;
}
//----------------------------------------------------------------------------
const int Binary2D::msArticulation[256] =
{
    0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,
    0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,
    0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,
    0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,
    0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
    1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
    0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,
    0,1,1,1,1,1,1,1,0,1,0,0,0,1,0,0,
    0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,
    1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,
    0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,
    1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,
    0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,
    0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0
};
//----------------------------------------------------------------------------