1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.8 (2015/11/21)
#include "Wm5MathematicsPCH.h"
#include "Wm5Delaunay2.h"
#include "Wm5Query2Filtered.h"
#include "Wm5Query2Int64.h"
#include "Wm5Query2Integer.h"
#include "Wm5Query2Rational.h"
namespace Wm5
{
template <typename Real>
const int Delaunay2<Real>::msIndex[3][2] = {{0,1},{1,2},{2,0}};
//----------------------------------------------------------------------------
template <typename Real>
Delaunay2<Real>::Delaunay2 (int numVertices, Vector2<Real>* vertices,
Real epsilon, bool owner, Query::Type queryType)
:
Delaunay<Real>(numVertices, epsilon, owner, queryType),
mVertices(vertices),
mNumUniqueVertices(0),
mSVertices(0),
mQuery(0),
mLineOrigin(Vector2<Real>::ZERO),
mLineDirection(Vector2<Real>::ZERO),
mPathLast(-1),
mPath(0),
mLastEdgeV0(-1),
mLastEdgeV1(-1),
mLastEdgeOpposite(-1),
mLastEdgeOppositeIndex(-1)
{
typename Vector2<Real>::Information info;
Vector2<Real>::GetInformation(mNumVertices, mVertices, mEpsilon, info);
if (info.mDimension == 0)
{
// The values of mDimension, mIndices, and mAdjacencies were
// already initialized by the Delaunay base class.
return;
}
if (info.mDimension == 1)
{
// The set is (nearly) collinear. The caller is responsible for
// creating a Delaunay1 object.
mDimension = 1;
mLineOrigin = info.mOrigin;
mLineDirection = info.mDirection[0];
return;
}
mDimension = 2;
// Allocate storage for the input vertices and the supertriangle
// vertices.
mSVertices = new1<Vector2<Real> >(mNumVertices);
int i;
if (queryType != Query::QT_RATIONAL && queryType != Query::QT_FILTERED)
{
// Transform the vertices to the square [0,1]^2.
mMin = Vector2<Real>(info.mMin[0], info.mMin[1]);
mScale = ((Real)1)/info.mMaxRange;
for (i = 0; i < mNumVertices; ++i)
{
mSVertices[i] = (mVertices[i] - mMin)*mScale;
}
Real expand;
if (queryType == Query::QT_INT64)
{
// Scale the vertices to the square [0,2^{16}]^2 to allow use of
// 64-bit integers for triangulation.
expand = (Real)(1 << 16);
mQuery = new0 Query2Int64<Real>(mNumVertices, mSVertices);
}
else if (queryType == Query::QT_INTEGER)
{
// Scale the vertices to the square [0,2^{20}]^2 to get more
// precision for TInteger than for 64-bit integers for
// triangulation.
expand = (Real)(1 << 20);
mQuery = new0 Query2Integer<Real>(mNumVertices, mSVertices);
}
else // queryType == Query::QT_REAL
{
// No scaling for floating point.
expand = (Real)1;
mQuery = new0 Query2<Real>(mNumVertices, mSVertices);
}
mScale *= expand;
for (i = 0; i < mNumVertices; ++i)
{
mSVertices[i] *= expand;
}
}
else
{
// No transformation needed for exact rational arithmetic.
mMin = Vector2<Real>::ZERO;
mScale = (Real)1;
memcpy(mSVertices, mVertices, mNumVertices*sizeof(Vector2<Real>));
if (queryType == Query::QT_RATIONAL)
{
mQuery = new0 Query2Rational<Real>(mNumVertices, mSVertices);
}
else // queryType == Query::QT_FILTERED
{
mQuery = new0 Query2Filtered<Real>(mNumVertices, mSVertices,
mEpsilon);
}
}
// Insert the (nondegenerate) triangle constructed by the call to
// GetInformation. This is necessary for the circumcircle-visibility
// algorithm to work correctly.
if (!info.mExtremeCCW)
{
std::swap(info.mExtreme[1], info.mExtreme[2]);
}
mTriMesh.InsertTriangle(info.mExtreme[0], info.mExtreme[1],
info.mExtreme[2]);
// Incrementally update the triangulation. The set of processed points
// is maintained to eliminate duplicates, either in the original input
// points or in the points obtained by snap rounding.
std::set<Vector2<Real> > processed;
for (i = 0; i < 3; ++i)
{
processed.insert(mSVertices[info.mExtreme[i]]);
}
for (i = 0; i < mNumVertices; ++i)
{
if (processed.find(mSVertices[i]) == processed.end())
{
Update(i);
processed.insert(mSVertices[i]);
}
}
mNumUniqueVertices = (int)processed.size();
// Assign integer values to the triangles for use by the caller.
std::map<Triangle*,int> permute;
i = -1;
permute[(Triangle*)0] = i++;
const ETManifoldMesh::TMap& tmap = mTriMesh.GetTriangles();
ETManifoldMesh::TMapCIterator element;
for (element = tmap.begin(); element != tmap.end(); ++element)
{
permute[element->second] = i++;
}
// Put Delaunay triangles into an array (vertices and adjacency info).
mNumSimplices = (int)mTriMesh.GetTriangles().size();
if (mNumSimplices > 0)
{
mIndices = new1<int>(3*mNumSimplices);
mAdjacencies = new1<int>(3*mNumSimplices);
i = 0;
for (element = tmap.begin(); element != tmap.end(); ++element)
{
const ETManifoldMesh::Triangle* tri = element->second;
for (int j = 0; j < 3; ++j, ++i)
{
mIndices[i] = tri->V[j];
mAdjacencies[i] = permute[tri->T[j]];
}
}
assertion(i == 3*mNumSimplices, "Unexpected mismatch\n");
mPathLast = -1;
mPath = new1<int>(mNumSimplices + 1);
memset(mPath, 0, (mNumSimplices + 1)*sizeof(int));
}
}
//----------------------------------------------------------------------------
template <typename Real>
Delaunay2<Real>::~Delaunay2 ()
{
delete0(mQuery);
delete1(mSVertices);
delete1(mPath);
if (mOwner)
{
delete1(mVertices);
}
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>* Delaunay2<Real>::GetVertices () const
{
return mVertices;
}
//----------------------------------------------------------------------------
template <typename Real>
int Delaunay2<Real>::GetNumUniqueVertices () const
{
return mNumUniqueVertices;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>& Delaunay2<Real>::GetLineOrigin () const
{
return mLineOrigin;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>& Delaunay2<Real>::GetLineDirection () const
{
return mLineDirection;
}
//----------------------------------------------------------------------------
template <typename Real>
Delaunay1<Real>* Delaunay2<Real>::GetDelaunay1 () const
{
assertion(mDimension == 1, "The dimension must be 1\n");
if (mDimension != 1)
{
return 0;
}
Real* projection = new1<Real>(mNumVertices);
for (int i = 0; i < mNumVertices; ++i)
{
Vector2<Real> diff = mVertices[i] - mLineOrigin;
projection[i] = mLineDirection.Dot(diff);
}
return new0 Delaunay1<Real>(mNumVertices, projection, mEpsilon, true,
mQueryType);
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetHull (int& numEdges, int*& indices)
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return false;
}
numEdges = 0;
indices = 0;
// Count the number of edges that are not shared by two triangles.
int i, numAdjacent = 3*mNumSimplices;
for (i = 0; i < numAdjacent; ++i)
{
if (mAdjacencies[i] == -1)
{
numEdges++;
}
}
assertion(numEdges > 0, "There must be at least one triangle\n");
if (numEdges == 0)
{
return false;
}
// Enumerate the edges.
indices = new1<int>(2*numEdges);
int* currentIndex = indices;
for (i = 0; i < numAdjacent; ++i)
{
if (mAdjacencies[i] == -1)
{
int tri = i/3, j = i%3;
*currentIndex++ = mIndices[3*tri + j];
*currentIndex++ = mIndices[3*tri + ((j+1)%3)];
}
}
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
int Delaunay2<Real>::GetContainingTriangle (const Vector2<Real>& p) const
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return -1;
}
// Convert to scaled coordinates.
Vector2<Real> scP = (p - mMin)*mScale;
// Start at first triangle in mesh.
int index = (mPathLast >= 0 ? mPath[mPathLast] : 0);
mPathLast = -1;
mLastEdgeV0 = -1;
mLastEdgeV1 = -1;
mLastEdgeOpposite = -1;
mLastEdgeOppositeIndex = -1;
// Use triangle edges as binary separating lines.
for (int i = 0; i < mNumSimplices; ++i)
{
mPath[++mPathLast] = index;
int* vertices = &mIndices[3*index];
if (mQuery->ToLine(scP, vertices[0], vertices[1]) > 0)
{
index = mAdjacencies[3*index];
if (index == -1)
{
mLastEdgeV0 = vertices[0];
mLastEdgeV1 = vertices[1];
mLastEdgeOpposite = vertices[2];
mLastEdgeOppositeIndex = 2;
return -1;
}
continue;
}
if (mQuery->ToLine(scP, vertices[1], vertices[2]) > 0)
{
index = mAdjacencies[3*index + 1];
if (index == -1)
{
mLastEdgeV0 = vertices[1];
mLastEdgeV1 = vertices[2];
mLastEdgeOpposite = vertices[0];
mLastEdgeOppositeIndex = 0;
return -1;
}
continue;
}
if (mQuery->ToLine(scP, vertices[2], vertices[0]) > 0)
{
index = mAdjacencies[3*index + 2];
if (index == -1)
{
mLastEdgeV0 = vertices[2];
mLastEdgeV1 = vertices[0];
mLastEdgeOpposite = vertices[1];
mLastEdgeOppositeIndex = 1;
return -1;
}
continue;
}
mLastEdgeV0 = -1;
mLastEdgeV1 = -1;
mLastEdgeOpposite = -1;
mLastEdgeOppositeIndex = -1;
return index;
}
return -1;
}
//----------------------------------------------------------------------------
template <typename Real>
int Delaunay2<Real>::GetPathLast () const
{
return mPathLast;
}
//----------------------------------------------------------------------------
template <typename Real>
const int* Delaunay2<Real>::GetPath () const
{
return mPath;
}
//----------------------------------------------------------------------------
template <typename Real>
int Delaunay2<Real>::GetLastEdge (int& v0, int& v1, int& v2) const
{
v0 = mLastEdgeV0;
v1 = mLastEdgeV1;
v2 = mLastEdgeOpposite;
return mLastEdgeOppositeIndex;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetVertexSet (int i, Vector2<Real> vertices[3]) const
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return false;
}
if (0 <= i && i < mNumSimplices)
{
vertices[0] = mVertices[mIndices[3*i ]];
vertices[1] = mVertices[mIndices[3*i + 1]];
vertices[2] = mVertices[mIndices[3*i + 2]];
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetIndexSet (int i, int indices[3]) const
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return false;
}
if (0 <= i && i < mNumSimplices)
{
indices[0] = mIndices[3*i ];
indices[1] = mIndices[3*i + 1];
indices[2] = mIndices[3*i + 2];
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetAdjacentSet (int i, int adjacencies[3]) const
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return false;
}
if (0 <= i && i < mNumSimplices)
{
adjacencies[0] = mAdjacencies[3*i ];
adjacencies[1] = mAdjacencies[3*i + 1];
adjacencies[2] = mAdjacencies[3*i + 2];
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetBarycentricSet (int i, const Vector2<Real>& p,
Real bary[3]) const
{
assertion(mDimension == 2, "The dimension must be 2\n");
if (mDimension != 2)
{
return false;
}
if (0 <= i && i < mNumSimplices)
{
Vector2<Real> v0 = mVertices[mIndices[3*i ]];
Vector2<Real> v1 = mVertices[mIndices[3*i + 1]];
Vector2<Real> v2 = mVertices[mIndices[3*i + 2]];
p.GetBarycentrics(v0, v1, v2, bary);
return true;
}
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
Delaunay2<Real>::Delaunay2 (const char* filename, int mode)
:
Delaunay<Real>(0, (Real)0, false, Query::QT_REAL),
mVertices(0),
mSVertices(0),
mQuery(0),
mPath(0)
{
bool loaded = Load(filename, mode);
assertion(loaded, "Cannot open file %s\n", filename);
WM5_UNUSED(loaded);
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::Load (const char* filename, int mode)
{
FileIO inFile(filename, mode);
if (!inFile)
{
return false;
}
Delaunay<Real>::Load(inFile);
delete0(mQuery);
delete1(mSVertices);
delete1(mPath);
if (mOwner)
{
delete1(mVertices);
}
mOwner = true;
mVertices = new1<Vector2<Real> >(mNumVertices);
mSVertices = new1<Vector2<Real> >(mNumVertices);
mPath = new1<int>(mNumSimplices + 1);
inFile.Read(sizeof(int), &mNumUniqueVertices);
inFile.Read(sizeof(int), &mPathLast);
inFile.Read(sizeof(int), &mLastEdgeV0);
inFile.Read(sizeof(int), &mLastEdgeV1);
inFile.Read(sizeof(int), &mLastEdgeOpposite);
inFile.Read(sizeof(int), &mLastEdgeOppositeIndex);
inFile.Read(sizeof(int), mNumSimplices + 1, mPath);
inFile.Read(sizeof(Real), 2*mNumVertices, mVertices);
inFile.Read(sizeof(Real), 2*mNumVertices, mSVertices);
inFile.Read(sizeof(Real), 2, &mMin);
inFile.Read(sizeof(Real), 2, &mScale);
inFile.Read(sizeof(Real), 2, &mLineOrigin);
inFile.Read(sizeof(Real), 2, &mLineDirection);
inFile.Close();
switch (mQueryType)
{
case Query::QT_INT64:
{
mQuery = new0 Query2Int64<Real>(mNumVertices, mSVertices);
break;
}
case Query::QT_INTEGER:
{
mQuery = new0 Query2Integer<Real>(mNumVertices, mSVertices);
break;
}
case Query::QT_RATIONAL:
{
mQuery = new0 Query2Rational<Real>(mNumVertices, mSVertices);
break;
}
case Query::QT_REAL:
{
mQuery = new0 Query2<Real>(mNumVertices, mSVertices);
break;
}
case Query::QT_FILTERED:
{
mQuery = new0 Query2Filtered<Real>(mNumVertices, mSVertices,
mEpsilon);
break;
}
}
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::Save (const char* filename, int mode) const
{
FileIO outFile(filename, mode);
if (!outFile)
{
return false;
}
Delaunay<Real>::Save(outFile);
outFile.Write(sizeof(int), &mNumUniqueVertices);
outFile.Write(sizeof(int), &mPathLast);
outFile.Write(sizeof(int), &mLastEdgeV0);
outFile.Write(sizeof(int), &mLastEdgeV1);
outFile.Write(sizeof(int), &mLastEdgeOpposite);
outFile.Write(sizeof(int), &mLastEdgeOppositeIndex);
outFile.Write(sizeof(int), mNumSimplices + 1, mPath);
outFile.Write(sizeof(Real), 2*mNumVertices, mVertices);
outFile.Write(sizeof(Real), 2*mNumVertices, mVertices);
outFile.Write(sizeof(Real), 2, &mMin);
outFile.Write(sizeof(Real), 2, &mScale);
outFile.Write(sizeof(Real), 2, &mLineOrigin);
outFile.Write(sizeof(Real), 2, &mLineDirection);
outFile.Close();
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Delaunay2<Real>::GetContainingTriangle (int i, Triangle*& tri) const
{
size_t const numTriangles = mTriMesh.GetTriangles().size();
for (size_t t = 0; t < numTriangles; ++t)
{
int j;
for (j = 0; j < 3; ++j)
{
const int edge[2] = { msIndex[j][0], msIndex[j][1] };
if (mQuery->ToLine(i, tri->V[edge[0]], tri->V[edge[1]]) > 0)
{
// Point i sees edge <v0,v1> from outside the triangle.
if (tri->T[j])
{
// Traverse to the triangle sharing the face.
tri = tri->T[j];
break;
}
else
{
// We reached a hull edge, so the point is outside the
// hull. TODO (for WM6): Once a hull data structure is
// in place, return tri->T[j] as the candidate for
// starting a search for visible hull edges.
return false;
}
}
}
if (j == 3)
{
// The point is inside all four edges, so the point is inside
// a triangle.
return true;
}
}
assertion(false, "Unexpected termination of GetContainingTriangle\n");
return false;
}
//----------------------------------------------------------------------------
template <typename Real>
void Delaunay2<Real>::GetAndRemoveInsertionPolygon (int i,
std::set<Triangle*>& candidates, std::set<OrderedEdgeKey>& boundary)
{
// Locate the triangles that make up the insertion polygon.
ETManifoldMesh polygon;
while (candidates.size() > 0)
{
Triangle* tri = *candidates.begin();
candidates.erase(candidates.begin());
for (int j = 0; j < 3; ++j)
{
Triangle* adj = tri->T[j];
if (adj && candidates.find(adj) == candidates.end())
{
if (mQuery->ToCircumcircle(i, adj->V[0], adj->V[1],
adj->V[2]) <= 0)
{
// Point i is in the circumcircle.
candidates.insert(adj);
}
}
}
polygon.InsertTriangle(tri->V[0], tri->V[1], tri->V[2]);
mTriMesh.RemoveTriangle(tri->V[0], tri->V[1], tri->V[2]);
}
// Get the boundary edges of the insertion polygon.
const ETManifoldMesh::TMap& tmap = polygon.GetTriangles();
ETManifoldMesh::TMapCIterator element;
for (element = tmap.begin(); element != tmap.end(); ++element)
{
const ETManifoldMesh::Triangle* tri = element->second;
for (int j = 0; j < 3; ++j)
{
if (!tri->T[j])
{
const int edge[2] = { msIndex[j][0], msIndex[j][1] };
boundary.insert(OrderedEdgeKey(tri->V[edge[0]],
tri->V[edge[1]]));
}
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void Delaunay2<Real>::Update (int i)
{
const ETManifoldMesh::TMap& tmap = mTriMesh.GetTriangles();
ETManifoldMesh::Triangle* tri = tmap.begin()->second;
if (GetContainingTriangle(i, tri))
{
// The point is inside the convex hull. The insertion polygon
// contains only triangles in the current triangulation; the
// hull does not change.
// Use a depth-first search for those triangles whose circumcircles
// contain point i.
std::set<Triangle*> candidates;
candidates.insert(tri);
// Get the boundary of the insertion polygon C that contains the
// triangles whose circumcircles contain point i. C contains the
// point i.
std::set<OrderedEdgeKey> boundary;
GetAndRemoveInsertionPolygon(i, candidates, boundary);
// The insertion polygon consists of the triangles formed by
// point i and the faces of C.
std::set<OrderedEdgeKey>::const_iterator key = boundary.begin();
for (key = boundary.begin(); key != boundary.end(); ++key)
{
if (mQuery->ToLine(i, key->V[0], key->V[1]) < 0)
{
mTriMesh.InsertTriangle(i, key->V[0], key->V[1]);
}
// else: Point i is on an edge of 'tri', so the
// subdivision has degenerate triangles. Ignore these.
}
}
else
{
// The point is outside the convex hull. The insertion polygon
// is formed by point i and any triangles in the current
// triangulation whose circumcircles contain point i.
// Locate the convex hull of the triangles. TODO: In WM6, maintain
// a hull data structure that is updated incrementally.
std::set<OrderedEdgeKey> hull;
const ETManifoldMesh::TMap& ttmap = mTriMesh.GetTriangles();
ETManifoldMesh::TMapCIterator element;
for (element = ttmap.begin(); element != ttmap.end(); ++element)
{
const ETManifoldMesh::Triangle* ttri = element->second;
for (int j = 0; j < 3; ++j)
{
if (!ttri->T[j])
{
const int edge[2] = { msIndex[j][0], msIndex[j][1] };
hull.insert(OrderedEdgeKey(ttri->V[edge[0]],
ttri->V[edge[1]]));
}
}
}
// TODO: Until the hull change in WM6, for now just iterate over all
// the hull edges and use the ones visible to point i to locate the
// insertion polygon.
const ETManifoldMesh::EMap& edgemap = mTriMesh.GetEdges();
std::set<Triangle*> candidates;
std::set<OrderedEdgeKey> visible;
std::set<OrderedEdgeKey>::const_iterator key;
for (key = hull.begin(); key != hull.end(); ++key)
{
if (mQuery->ToLine(i, key->V[0], key->V[1]) > 0)
{
ETManifoldMesh::EMapCIterator iter =
edgemap.find(EdgeKey(key->V[0], key->V[1]));
assertion(iter != edgemap.end(), "Unexpected condition\n");
assertion(iter->second->T[1] == 0, "Unexpected condition\n");
Triangle* adj = iter->second->T[0];
if (adj && candidates.find(adj) == candidates.end())
{
if (mQuery->ToCircumcircle(i, adj->V[0], adj->V[1],
adj->V[2]) <= 0)
{
// Point i is in the circumcircle.
candidates.insert(adj);
}
else
{
// Point i is not in the circumcircle but the hull edge
// is visible.
visible.insert(*key);
}
}
}
}
// Get the boundary of the insertion subpolygon C that contains the
// triangles whose circumcircles contain point i.
std::set<OrderedEdgeKey> boundary;
GetAndRemoveInsertionPolygon(i, candidates, boundary);
// The insertion polygon P consists of the triangles formed by
// point i and the back edges of C *and* the visible edges of
// mTriMesh-C.
for (key = boundary.begin(); key != boundary.end(); ++key)
{
if (mQuery->ToLine(i, key->V[0], key->V[1]) < 0)
{
// This is a back edge of the boundary.
mTriMesh.InsertTriangle(i, key->V[0], key->V[1]);
}
}
for (key = visible.begin(); key != visible.end(); ++key)
{
mTriMesh.InsertTriangle(i, key->V[1], key->V[0]);
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class Delaunay2<float>;
template WM5_MATHEMATICS_ITEM
class Delaunay2<double>;
//----------------------------------------------------------------------------
}
|