1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5ContEllipsoid3MinCR.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
ContEllipsoid3MinCR<Real>::ContEllipsoid3MinCR (int numPoints,
const Vector3<Real>* points, const Vector3<Real>& C,
const Matrix3<Real>& R, Real D[3])
{
// Compute the constraint coefficients, of the form (A[0],A[1]) for
// each i.
std::vector<Vector3<Real> > A(numPoints);
for (int i = 0; i < numPoints; ++i)
{
Vector3<Real> diff = points[i] - C; // P[i] - C
Vector3<Real> prod = diff*R; // R^T*(P[i] - C) = (u,v,w)
A[i].X() = prod.X()*prod.X(); // u^2
A[i].Y() = prod.Y()*prod.Y(); // v^2
A[i].Z() = prod.Z()*prod.Z(); // w^2
}
// TODO: Sort the constraints to eliminate redundant ones. It is clear
// how to do this in ContEllipse2MinCR. How to do this in 3D?
MaxProduct(A, D);
}
//----------------------------------------------------------------------------
template <typename Real>
void ContEllipsoid3MinCR<Real>::FindEdgeMax (std::vector<Vector3<Real> >& A,
int& plane0, int& plane1, Real D[3])
{
// Compute direction to local maximum point on line of intersection.
Real xDir = A[plane0][1]*A[plane1][2] - A[plane1][1]*A[plane0][2];
Real yDir = A[plane0][2]*A[plane1][0] - A[plane1][2]*A[plane0][0];
Real zDir = A[plane0][0]*A[plane1][1] - A[plane1][0]*A[plane0][1];
// Build quadratic Q'(t) = (d/dt)(x(t)y(t)z(t)) = a0+a1*t+a2*t^2.
Real a0 = D[0]*D[1]*zDir + D[0]*D[2]*yDir + D[1]*D[2]*xDir;
Real a1 = ((Real)2)*(D[2]*xDir*yDir + D[1]*xDir*zDir + D[0]*yDir*zDir);
Real a2 = ((Real)3)*(xDir*yDir*zDir);
// Find root to Q'(t) = 0 corresponding to maximum.
Real tFinal;
if (a2 != (Real)0)
{
Real invA2 = ((Real)1)/a2;
Real discr = a1*a1 - ((Real)4)*a0*a2;
discr = Math<Real>::Sqrt(Math<Real>::FAbs(discr));
tFinal = -((Real)0.5)*(a1 + discr)*invA2;
if (a1 + ((Real)2)*a2*tFinal > (Real)0)
{
tFinal = ((Real)0.5)*(-a1 + discr)*invA2;
}
}
else if (a1 != (Real)0)
{
tFinal = -a0/a1;
}
else if (a0 != (Real)0)
{
tFinal =
(a0 >= (Real)0 ? Math<Real>::MAX_REAL : -Math<Real>::MAX_REAL);
}
else
{
return;
}
if (tFinal < (Real)0)
{
// Make (xDir,yDir,zDir) point in direction of increase of Q.
tFinal = -tFinal;
xDir = -xDir;
yDir = -yDir;
zDir = -zDir;
}
// Sort remaining planes along line from current point to local maximum.
Real tMax = tFinal;
int plane2 = -1;
const int numPoints = (int)A.size();
for (int i = 0; i < numPoints; ++i)
{
if (i == plane0 || i == plane1)
{
continue;
}
Real norDotDir = A[i][0]*xDir + A[i][1]*yDir + A[i][2]*zDir;
if (norDotDir <= (Real)0)
{
continue;
}
// Theoretically the numerator must be nonnegative since an invariant
// in the algorithm is that (x0,y0,z0) is on the convex hull of the
// constraints. However, some numerical error may make this a small
// negative number. In that case set tmax = 0 (no change in
// position).
Real numer = (Real)1 - A[i][0]*D[0] - A[i][1]*D[1] - A[i][2]*D[2];
if (numer < (Real)0)
{
assertion(numer >= -Math<Real>::ZERO_TOLERANCE,
"Unexpected condition\n");
plane2 = i;
tMax = (Real)0;
break;
}
Real t = numer/norDotDir;
if (0 <= t && t < tMax)
{
plane2 = i;
tMax = t;
}
}
D[0] += tMax*xDir;
D[1] += tMax*yDir;
D[2] += tMax*zDir;
if (tMax == tFinal)
{
return;
}
if (tMax > Math<Real>::ZERO_TOLERANCE)
{
plane0 = plane2;
FindFacetMax(A, plane0, D);
return;
}
// tmax == 0, so return with D[0], D[1], and D[2] unchanged.
}
//----------------------------------------------------------------------------
template <typename Real>
void ContEllipsoid3MinCR<Real>::FindFacetMax (std::vector<Vector3<Real> >& A,
int& plane0, Real D[3])
{
Real tFinal, xDir, yDir, zDir;
if (A[plane0][0] > Math<Real>::ZERO_TOLERANCE
&& A[plane0][1] > Math<Real>::ZERO_TOLERANCE
&& A[plane0][2] > Math<Real>::ZERO_TOLERANCE)
{
// Compute local maximum point on plane.
const Real oneThird = (Real)(1.0/3.0);
Real xMax = oneThird/A[plane0][0];
Real yMax = oneThird/A[plane0][1];
Real zMax = oneThird/A[plane0][2];
// Compute direction to local maximum point on plane.
tFinal = (Real)1;
xDir = xMax - D[0];
yDir = yMax - D[1];
zDir = zMax - D[2];
}
else
{
tFinal = Math<Real>::MAX_REAL;
if (A[plane0][0] > Math<Real>::ZERO_TOLERANCE)
{
xDir = (Real)0;
}
else
{
xDir = (Real)1;
}
if (A[plane0][1] > Math<Real>::ZERO_TOLERANCE)
{
yDir = (Real)0;
}
else
{
yDir = (Real)1;
}
if (A[plane0][2] > Math<Real>::ZERO_TOLERANCE)
{
zDir = (Real)0;
}
else
{
zDir = (Real)1;
}
}
// Sort remaining planes along line from current point.
Real tMax = tFinal;
int plane1 = -1;
const int numPoints = (int)A.size();
for (int i = 0; i < numPoints; ++i)
{
if (i == plane0)
{
continue;
}
Real norDotDir = A[i][0]*xDir + A[i][1]*yDir + A[i][2]*zDir;
if (norDotDir <= (Real)0)
{
continue;
}
// Theoretically the numerator must be nonnegative since an invariant
// in the algorithm is that (x0,y0,z0) is on the convex hull of the
// constraints. However, some numerical error may make this a small
// negative number. In that case, set tmax = 0 (no change in
// position).
Real numer = (Real)1 - A[i][0]*D[0] - A[i][1]*D[1] - A[i][2]*D[2];
if (numer < (Real)0)
{
assertion(numer >= -Math<Real>::ZERO_TOLERANCE,
"Unexpected condition\n");
plane1 = i;
tMax = (Real)0;
break;
}
Real t = numer/norDotDir;
if (0 <= t && t < tMax)
{
plane1 = i;
tMax = t;
}
}
D[0] += tMax*xDir;
D[1] += tMax*yDir;
D[2] += tMax*zDir;
if (tMax == (Real)1)
{
return;
}
if (tMax > Math<Real>::ZERO_TOLERANCE)
{
plane0 = plane1;
FindFacetMax(A, plane0, D);
return;
}
FindEdgeMax(A, plane0, plane1, D);
}
//----------------------------------------------------------------------------
template <typename Real>
void ContEllipsoid3MinCR<Real>::MaxProduct (std::vector<Vector3<Real> >& A,
Real D[3])
{
// Maximize x*y*z subject to x >= 0, y >= 0, z >= 0, and
// A[i]*x+B[i]*y+C[i]*z <= 1 for 0 <= i < N where A[i] >= 0,
// B[i] >= 0, and C[i] >= 0.
// Jitter the lines to avoid cases where more than three planes
// intersect at the same point. Should also break parallelism
// and planes parallel to the coordinate planes.
const Real maxJitter = (Real)1e-12;
const int numPoints = (int)A.size();
int i;
for (i = 0; i < numPoints; ++i)
{
A[i][0] += maxJitter*Math<Real>::UnitRandom();
A[i][1] += maxJitter*Math<Real>::UnitRandom();
A[i][2] += maxJitter*Math<Real>::UnitRandom();
}
// Sort lines along the z-axis (x = 0 and y = 0).
int plane = -1;
Real zmax = (Real)0;
for (i = 0; i < numPoints; ++i)
{
if (A[i][2] > zmax)
{
zmax = A[i][2];
plane = i;
}
}
assertion(plane != -1, "Unexpected condition\n");
// Walk along convex hull searching for maximum.
D[0] = (Real)0;
D[1] = (Real)0;
D[2] = ((Real)1)/zmax;
FindFacetMax(A, plane, D);
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class ContEllipsoid3MinCR<float>;
template WM5_MATHEMATICS_ITEM
class ContEllipsoid3MinCR<double>;
//----------------------------------------------------------------------------
}
|