File: Wm5Distance.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 90,112 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 39
file content (363 lines) | stat: -rw-r--r-- 11,953 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)

#include "Wm5MathematicsPCH.h"
#include "Wm5Distance.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Distance<Real,TVector>::Distance ()
    :
    MaximumIterations(8),
    ZeroThreshold(Math<Real>::ZERO_TOLERANCE),
    mContactTime(Math<Real>::MAX_REAL),
    mHasMultipleClosestPoints0(false),
    mHasMultipleClosestPoints1(false)
{
    SetDifferenceStep((Real)1e-03);
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Distance<Real,TVector>::~Distance ()
{
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDifferenceStep () const
{
    return mDifferenceStep;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetContactTime () const
{
    return mContactTime;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
const TVector& Distance<Real,TVector>::GetClosestPoint0 () const
{
    return mClosestPoint0;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
const TVector& Distance<Real,TVector>::GetClosestPoint1 () const
{
    return mClosestPoint1;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
bool Distance<Real,TVector>::HasMultipleClosestPoints0 () const
{
    return mHasMultipleClosestPoints0;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
bool Distance<Real,TVector>::HasMultipleClosestPoints1 () const
{
    return mHasMultipleClosestPoints1;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
void Distance<Real,TVector>::SetDifferenceStep (Real differenceStep)
{
    if (differenceStep > (Real)0)
    {
        mDifferenceStep = differenceStep;
    }
    else
    {
        assertion(differenceStep > (Real)0, "Invalid difference step\n");
        mDifferenceStep = (Real)1e-03;
    }

    mInvTwoDifferenceStep = ((Real)0.5)/mDifferenceStep;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDerivative (Real t,
    const TVector& velocity0, const TVector& velocity1)
{
    // Use a finite difference approximation:  f'(t) = (f(t+h)-f(t-h))/(2*h)
    Real funcp = Get(t + mDifferenceStep, velocity0, velocity1);
    Real funcm = Get(t - mDifferenceStep, velocity0, velocity1);
    Real derApprox = mInvTwoDifferenceStep*(funcp - funcm);
    return derApprox;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDerivativeSquared (Real t,
    const TVector& velocity0, const TVector& velocity1)
{
    // A derived class should override this only if there is a faster method
    // to compute the derivative of the squared distance for the specific
    // class.
    Real distance = Get(t, velocity0, velocity1);
    Real derivative = GetDerivative(t, velocity0, velocity1);
    return ((Real)2)*distance*derivative;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::Get (Real tmin, Real tmax,
    const TVector& velocity0, const TVector& velocity1)
{
    // The assumption is that distance f(t) is a convex function.  If
    // f'(tmin) >= 0, then the minimum occurs at tmin.  If f'(tmax) <= 0,
    // then the minimum occurs at tmax.  Otherwise, f'(0) < 0 and
    // f'(tmax) > 0 and the minimum occurs at some t in (tmin,tmax).

    Real t0 = tmin;
    Real f0 = Get(t0, velocity0, velocity1);
    if (f0 <= ZeroThreshold)
    {
        // The distance is effectively zero.  The objects are initially in
        // contact.
        mContactTime = t0;
        return (Real)0;
    }
    Real df0 = GetDerivative(t0, velocity0, velocity1);
    if (df0 >= (Real)0)
    {
        // The distance is increasing on [0,tmax].
        mContactTime = t0;
        return f0;
    }

    Real t1 = tmax;
    Real f1 = Get(t1, velocity0, velocity1);
    if (f1 <= ZeroThreshold)
    {
        // The distance is effectively zero.
        mContactTime = t1;
        return (Real)0;
    }
    Real df1 = GetDerivative(t1, velocity0, velocity1);
    if (df1 <= (Real)0)
    {
        // The distance is decreasing on [0,tmax].
        mContactTime = t1;
        return f1;
    }

    // Start the process with Newton's method for computing a time when the
    // distance is zero.  During this process we will switch to a numerical
    // minimizer if we decide that the distance cannot be zero.
    int i;
    for (i = 0; i < MaximumIterations; ++i)
    {
        // Compute the next Newton's iterate.
        Real t = t0 - f0/df0;
        if (t >= tmax)
        {
            // The convexity of the graph guarantees that when this condition
            // happens, the distance is always positive.  Switch to a
            // numerical minimizer.
            break;
        }

        Real f = Get(t, velocity0, velocity1);
        if (f <= ZeroThreshold)
        {
            // The distance is effectively zero.
            mContactTime = t;
            return (Real)0;
        }

        Real df = GetDerivative(t, velocity0, velocity1);
        if (df >= (Real)0)
        {
            // The convexity of the graph guarantees that when this condition
            // happens, the distance is always positive.  Switch to a
            // numerical minimizer.
            break;
        }

        t0 = t;
        f0 = f;
        df0 = df;
    }

    if (i == MaximumIterations)
    {
        // Failed to converge within desired number of iterations.  To
        // reach here, the derivative values were always negative, so report
        // the distance at the last time.
        mContactTime = t0;
        return f0;
    }

    // The distance is always positive.  Use bisection to find the root of
    // the derivative function.
    Real tm = t0;
    for (i = 0; i < MaximumIterations; ++i)
    {
        tm = ((Real)0.5)*(t0 + t1);
        Real dfm = GetDerivative(tm, velocity0, velocity1);
        Real product = dfm*df0;
        if (product < -ZeroThreshold)
        {
            t1 = tm;
            df1 = dfm;
        }
        else if (product > ZeroThreshold)
        {
            t0 = tm;
            df0 = dfm;
        }
        else
        {
            break;
        }
    }

    // This is the time at which the minimum occurs and is not the contact
    // time.  Store it anyway for debugging purposes.
    mContactTime = tm;
    Real fm = Get(tm, velocity0, velocity1);
    return fm;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetSquared (Real tmin, Real tmax,
    const TVector& velocity0, const TVector& velocity1)
{
    // The assumption is that distance f(t) is a convex function.  If
    // f'(tmin) >= 0, then the minimum occurs at tmin.  If f'(tmax) <= 0,
    // then the minimum occurs at tmax.  Otherwise, f'(0) < 0 and
    // f'(tmax) > 0 and the minimum occurs at some t in (tmin,tmax).

    Real t0 = tmin;
    Real f0 = GetSquared(t0, velocity0, velocity1);
    if (f0 <= ZeroThreshold)
    {
        // The distance is effectively zero.  The objects are initially in
        // contact.
        mContactTime = t0;
        return (Real)0;
    }
    Real df0 = GetDerivativeSquared(t0, velocity0, velocity1);
    if (df0 >= (Real)0)
    {
        // The distance is increasing on [0,tmax].
        mContactTime = t0;
        return f0;
    }

    Real t1 = tmax;
    Real f1 = GetSquared(t1, velocity0, velocity1);
    if (f1 <= ZeroThreshold)
    {
        // The distance is effectively zero.
        mContactTime = t1;
        return (Real)0;
    }
    Real df1 = GetDerivativeSquared(t1, velocity0, velocity1);
    if (df1 <= (Real)0)
    {
        // The distance is decreasing on [0,tmax].
        mContactTime = t1;
        return f1;
    }

    // Start the process with Newton's method for computing a time when the
    // distance is zero.  During this process we will switch to a numerical
    // minimizer if we decide that the distance cannot be zero.
    int i;
    for (i = 0; i < MaximumIterations; ++i)
    {
        // Compute the next Newton's iterate.
        Real t = t0 - f0/df0;
        if (t >= tmax)
        {
            // The convexity of the graph guarantees that when this condition
            // happens, the distance is always positive.  Switch to a
            // numerical minimizer.
            break;
        }

        Real f = GetSquared(t, velocity0, velocity1);
        if (f <= ZeroThreshold)
        {
            // The distance is effectively zero.
            mContactTime = t;
            return (Real)0;
        }

        Real df = GetDerivativeSquared(t, velocity0, velocity1);
        if (df >= (Real)0)
        {
            // The convexity of the graph guarantees that when this condition
            // happens, the distance is always positive.  Switch to a
            // numerical minimizer.
            break;
        }

        t0 = t;
        f0 = f;
        df0 = df;
    }

    if (i == MaximumIterations)
    {
        // Failed to converge within desired number of iterations.  To
        // reach here, the derivative values were always negative, so report
        // the distance at the last time.
        mContactTime = t0;
        return f0;
    }

    // The distance is always positive.  Use bisection to find the root of
    // the derivative function.
    Real tm = t0;
    for (i = 0; i < MaximumIterations; ++i)
    {
        tm = ((Real)0.5)*(t0 + t1);
        Real dfm = GetDerivativeSquared(tm, velocity0, velocity1);
        Real product = dfm*df0;
        if (product < -ZeroThreshold)
        {
            t1 = tm;
            df1 = dfm;
        }
        else if (product > ZeroThreshold)
        {
            t0 = tm;
            df0 = dfm;
        }
        else
        {
            break;
        }
    }

    // This is the time at which the minimum occurs and is not the contact
    // time.  Store it anyway for debugging purposes.
    mContactTime = tm;
    Real fm = GetSquared(tm, velocity0, velocity1);
    return fm;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class Distance<float,Vector2f>;

template WM5_MATHEMATICS_ITEM
class Distance<float,Vector3f>;

template WM5_MATHEMATICS_ITEM
class Distance<double,Vector2d>;

template WM5_MATHEMATICS_ITEM
class Distance<double,Vector3d>;
//----------------------------------------------------------------------------
}