1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#include "Wm5MathematicsPCH.h"
#include "Wm5Distance.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Distance<Real,TVector>::Distance ()
:
MaximumIterations(8),
ZeroThreshold(Math<Real>::ZERO_TOLERANCE),
mContactTime(Math<Real>::MAX_REAL),
mHasMultipleClosestPoints0(false),
mHasMultipleClosestPoints1(false)
{
SetDifferenceStep((Real)1e-03);
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Distance<Real,TVector>::~Distance ()
{
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDifferenceStep () const
{
return mDifferenceStep;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetContactTime () const
{
return mContactTime;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
const TVector& Distance<Real,TVector>::GetClosestPoint0 () const
{
return mClosestPoint0;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
const TVector& Distance<Real,TVector>::GetClosestPoint1 () const
{
return mClosestPoint1;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
bool Distance<Real,TVector>::HasMultipleClosestPoints0 () const
{
return mHasMultipleClosestPoints0;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
bool Distance<Real,TVector>::HasMultipleClosestPoints1 () const
{
return mHasMultipleClosestPoints1;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
void Distance<Real,TVector>::SetDifferenceStep (Real differenceStep)
{
if (differenceStep > (Real)0)
{
mDifferenceStep = differenceStep;
}
else
{
assertion(differenceStep > (Real)0, "Invalid difference step\n");
mDifferenceStep = (Real)1e-03;
}
mInvTwoDifferenceStep = ((Real)0.5)/mDifferenceStep;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDerivative (Real t,
const TVector& velocity0, const TVector& velocity1)
{
// Use a finite difference approximation: f'(t) = (f(t+h)-f(t-h))/(2*h)
Real funcp = Get(t + mDifferenceStep, velocity0, velocity1);
Real funcm = Get(t - mDifferenceStep, velocity0, velocity1);
Real derApprox = mInvTwoDifferenceStep*(funcp - funcm);
return derApprox;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetDerivativeSquared (Real t,
const TVector& velocity0, const TVector& velocity1)
{
// A derived class should override this only if there is a faster method
// to compute the derivative of the squared distance for the specific
// class.
Real distance = Get(t, velocity0, velocity1);
Real derivative = GetDerivative(t, velocity0, velocity1);
return ((Real)2)*distance*derivative;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::Get (Real tmin, Real tmax,
const TVector& velocity0, const TVector& velocity1)
{
// The assumption is that distance f(t) is a convex function. If
// f'(tmin) >= 0, then the minimum occurs at tmin. If f'(tmax) <= 0,
// then the minimum occurs at tmax. Otherwise, f'(0) < 0 and
// f'(tmax) > 0 and the minimum occurs at some t in (tmin,tmax).
Real t0 = tmin;
Real f0 = Get(t0, velocity0, velocity1);
if (f0 <= ZeroThreshold)
{
// The distance is effectively zero. The objects are initially in
// contact.
mContactTime = t0;
return (Real)0;
}
Real df0 = GetDerivative(t0, velocity0, velocity1);
if (df0 >= (Real)0)
{
// The distance is increasing on [0,tmax].
mContactTime = t0;
return f0;
}
Real t1 = tmax;
Real f1 = Get(t1, velocity0, velocity1);
if (f1 <= ZeroThreshold)
{
// The distance is effectively zero.
mContactTime = t1;
return (Real)0;
}
Real df1 = GetDerivative(t1, velocity0, velocity1);
if (df1 <= (Real)0)
{
// The distance is decreasing on [0,tmax].
mContactTime = t1;
return f1;
}
// Start the process with Newton's method for computing a time when the
// distance is zero. During this process we will switch to a numerical
// minimizer if we decide that the distance cannot be zero.
int i;
for (i = 0; i < MaximumIterations; ++i)
{
// Compute the next Newton's iterate.
Real t = t0 - f0/df0;
if (t >= tmax)
{
// The convexity of the graph guarantees that when this condition
// happens, the distance is always positive. Switch to a
// numerical minimizer.
break;
}
Real f = Get(t, velocity0, velocity1);
if (f <= ZeroThreshold)
{
// The distance is effectively zero.
mContactTime = t;
return (Real)0;
}
Real df = GetDerivative(t, velocity0, velocity1);
if (df >= (Real)0)
{
// The convexity of the graph guarantees that when this condition
// happens, the distance is always positive. Switch to a
// numerical minimizer.
break;
}
t0 = t;
f0 = f;
df0 = df;
}
if (i == MaximumIterations)
{
// Failed to converge within desired number of iterations. To
// reach here, the derivative values were always negative, so report
// the distance at the last time.
mContactTime = t0;
return f0;
}
// The distance is always positive. Use bisection to find the root of
// the derivative function.
Real tm = t0;
for (i = 0; i < MaximumIterations; ++i)
{
tm = ((Real)0.5)*(t0 + t1);
Real dfm = GetDerivative(tm, velocity0, velocity1);
Real product = dfm*df0;
if (product < -ZeroThreshold)
{
t1 = tm;
df1 = dfm;
}
else if (product > ZeroThreshold)
{
t0 = tm;
df0 = dfm;
}
else
{
break;
}
}
// This is the time at which the minimum occurs and is not the contact
// time. Store it anyway for debugging purposes.
mContactTime = tm;
Real fm = Get(tm, velocity0, velocity1);
return fm;
}
//----------------------------------------------------------------------------
template <typename Real, typename TVector>
Real Distance<Real,TVector>::GetSquared (Real tmin, Real tmax,
const TVector& velocity0, const TVector& velocity1)
{
// The assumption is that distance f(t) is a convex function. If
// f'(tmin) >= 0, then the minimum occurs at tmin. If f'(tmax) <= 0,
// then the minimum occurs at tmax. Otherwise, f'(0) < 0 and
// f'(tmax) > 0 and the minimum occurs at some t in (tmin,tmax).
Real t0 = tmin;
Real f0 = GetSquared(t0, velocity0, velocity1);
if (f0 <= ZeroThreshold)
{
// The distance is effectively zero. The objects are initially in
// contact.
mContactTime = t0;
return (Real)0;
}
Real df0 = GetDerivativeSquared(t0, velocity0, velocity1);
if (df0 >= (Real)0)
{
// The distance is increasing on [0,tmax].
mContactTime = t0;
return f0;
}
Real t1 = tmax;
Real f1 = GetSquared(t1, velocity0, velocity1);
if (f1 <= ZeroThreshold)
{
// The distance is effectively zero.
mContactTime = t1;
return (Real)0;
}
Real df1 = GetDerivativeSquared(t1, velocity0, velocity1);
if (df1 <= (Real)0)
{
// The distance is decreasing on [0,tmax].
mContactTime = t1;
return f1;
}
// Start the process with Newton's method for computing a time when the
// distance is zero. During this process we will switch to a numerical
// minimizer if we decide that the distance cannot be zero.
int i;
for (i = 0; i < MaximumIterations; ++i)
{
// Compute the next Newton's iterate.
Real t = t0 - f0/df0;
if (t >= tmax)
{
// The convexity of the graph guarantees that when this condition
// happens, the distance is always positive. Switch to a
// numerical minimizer.
break;
}
Real f = GetSquared(t, velocity0, velocity1);
if (f <= ZeroThreshold)
{
// The distance is effectively zero.
mContactTime = t;
return (Real)0;
}
Real df = GetDerivativeSquared(t, velocity0, velocity1);
if (df >= (Real)0)
{
// The convexity of the graph guarantees that when this condition
// happens, the distance is always positive. Switch to a
// numerical minimizer.
break;
}
t0 = t;
f0 = f;
df0 = df;
}
if (i == MaximumIterations)
{
// Failed to converge within desired number of iterations. To
// reach here, the derivative values were always negative, so report
// the distance at the last time.
mContactTime = t0;
return f0;
}
// The distance is always positive. Use bisection to find the root of
// the derivative function.
Real tm = t0;
for (i = 0; i < MaximumIterations; ++i)
{
tm = ((Real)0.5)*(t0 + t1);
Real dfm = GetDerivativeSquared(tm, velocity0, velocity1);
Real product = dfm*df0;
if (product < -ZeroThreshold)
{
t1 = tm;
df1 = dfm;
}
else if (product > ZeroThreshold)
{
t0 = tm;
df0 = dfm;
}
else
{
break;
}
}
// This is the time at which the minimum occurs and is not the contact
// time. Store it anyway for debugging purposes.
mContactTime = tm;
Real fm = GetSquared(tm, velocity0, velocity1);
return fm;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class Distance<float,Vector2f>;
template WM5_MATHEMATICS_ITEM
class Distance<float,Vector3f>;
template WM5_MATHEMATICS_ITEM
class Distance<double,Vector2d>;
template WM5_MATHEMATICS_ITEM
class Distance<double,Vector3d>;
//----------------------------------------------------------------------------
}
|