File: Wm5IntrEllipse2Ellipse2.cpp

package info (click to toggle)
libwildmagic 5.17%2Bcleaned1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 90,112 kB
  • sloc: cpp: 215,940; csh: 637; sh: 91; makefile: 39
file content (807 lines) | stat: -rw-r--r-- 26,820 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.4 (2015/11/21)

#include "Wm5MathematicsPCH.h"
#include "Wm5IntrEllipse2Ellipse2.h"
#include "Wm5IntrBox2Box2.h"
#include "Wm5PolynomialRoots.h"

namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrEllipse2Ellipse2<Real>::IntrEllipse2Ellipse2 (
    const Ellipse2<Real>& ellipse0, const Ellipse2<Real>& ellipse1)
    :
    DIGITS_ACCURACY(10),
    mEllipse0(&ellipse0),
    mEllipse1(&ellipse1)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipse2<Real>& IntrEllipse2Ellipse2<Real>::GetEllipse0 () const
{
    return *mEllipse0;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipse2<Real>& IntrEllipse2Ellipse2<Real>::GetEllipse1 () const
{
    return *mEllipse1;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrEllipse2Ellipse2<Real>::Test ()
{
    return Find();
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrEllipse2Ellipse2<Real>::Find ()
{
    mQuantity = 0;

    // Test for separation of oriented bounding boxes of ellipses.  This is
    // a fast-out attempt.
    Box2<Real> box0, box1;
    box0.Center = mEllipse0->Center;
    box0.Axis[0] = mEllipse0->Axis[0];
    box0.Axis[1] = mEllipse0->Axis[1];
    box0.Extent[0] = mEllipse0->Extent[0];
    box0.Extent[1] = mEllipse0->Extent[1];
    box1.Center = mEllipse1->Center;
    box1.Axis[0] = mEllipse1->Axis[0];
    box1.Axis[1] = mEllipse1->Axis[1];
    box1.Extent[0] = mEllipse1->Extent[0];
    box1.Extent[1] = mEllipse1->Extent[1];
    if(!IntrBox2Box2<Real>(box0, box1).Test())
    {
        // The boxes do not overlap, so neither do the ellipses.
        mIntersectionType = IT_EMPTY;
        return false;
    }

    // Compute the 4th-degree polynomial whose roots lead to intersections of
    // the ellipses, and then compute its roots.
    Polynomial1<Real> poly = GetQuartic(*mEllipse0, *mEllipse1);
    PolynomialRoots<Real> proots(Math<Real>::ZERO_TOLERANCE);
    proots.FindB(poly, DIGITS_ACCURACY);
    int yCount = proots.GetCount();
    const Real* yRoot = proots.GetRoots();
    if (yCount == 0)
    {
        mIntersectionType = IT_EMPTY;
        return false;
    }

    // TODO:  Adjust the comments.
    // Compute the coefficients of a polynomial in s = sin(angle) and
    // c = cos(angle) that relates ellipse0 to ellipse1
    // affinely transformed to a circle.  The polynomial is
    //   d0 + d1*c + d2*s + d3*c^2 + d4*c*s + d5*s^2 = 0
    // where c^2 + s^2 = 1.
    Vector2<Real> C0mC1 = mEllipse0->Center - mEllipse1->Center;
    Matrix2<Real> M1;
    mEllipse1->GetM(M1);
    Vector2<Real> M1C0mC1 = M1*C0mC1;
    Vector2<Real> M1A0 = M1*mEllipse0->Axis[0];
    Vector2<Real> M1A1 = M1*mEllipse0->Axis[1];
    Real coeff[6];
    coeff[0] = M1C0mC1.Dot(C0mC1) - (Real)1;
    coeff[1] = ((Real)2)*mEllipse0->Extent[0]*(M1A0.Dot(C0mC1));
    coeff[2] = ((Real)2)*mEllipse0->Extent[1]*(M1A1.Dot(C0mC1));
    coeff[3] = mEllipse0->Extent[0]*mEllipse0->Extent[0]*
        (M1A0.Dot(mEllipse0->Axis[0]));
    coeff[4] = ((Real)2)*mEllipse0->Extent[0]*mEllipse0->Extent[1]*
        (M1A0.Dot(mEllipse0->Axis[1]));
    coeff[5] = mEllipse0->Extent[1]*mEllipse0->Extent[1]*
        (M1A1.Dot(mEllipse0->Axis[1]));

    // Evaluate the quadratics, saving the values to test later for closeness
    // to zero and for root polishing.
    Real qp0[6], qp1[6];
    mEllipse0->ToCoefficients(qp0);
    mEllipse1->ToCoefficients(qp1);
    std::vector<Measurement> measure(8);  // store <x,y,sqrt(Q0^2+S1^2)>
    Vector2<Real> point;
    int i;
    for (int iy = 0; iy < yCount; ++iy)
    {
        point[1] = yRoot[iy];
        PolynomialRoots<Real> ar(Math<Real>::ZERO_TOLERANCE);
        Polynomial1<Real> apoly(2);
        apoly[0] = qp0[0] + point[1]*(qp0[2] + point[1]*qp0[5]);
        apoly[1] = qp0[1] + point[1]*qp0[4];
        apoly[2] = qp0[3];
        ar.FindB(apoly, DIGITS_ACCURACY);
        int xCount = ar.GetCount();
        const Real* xRoot = ar.GetRoots();
        for (int ix = 0; ix < xCount; ++ix)
        {
            point[0] = xRoot[ix];
            Real q0 = mEllipse0->Evaluate(point);
            Real q1 = mEllipse1->Evaluate(point);

            Real angle0;
            bool transverse = RefinePoint(coeff, point, q0, q1, angle0);

            i = ix + 2*iy;
            measure[i].Point = point;
            measure[i].Q0 = q0;
            measure[i].Q1 = q1;
            measure[i].Norm = Math<Real>::Sqrt(q0*q0 + q1*q1);
            measure[i].Angle0 = angle0;
            measure[i].Transverse = transverse;
        }
    }
    std::sort(measure.begin(), measure.end());

    for (i = 0; i < 8; ++i)
    {
        if (measure[i].Norm < Math<Real>::ZERO_TOLERANCE)
        {
            int j;
            Real adiff;
            for (j = 0; j < mQuantity; ++j)
            {
                adiff = measure[i].Angle0 - measure[j].Angle0;
                if (Math<Real>::FAbs(adiff) < Math<Real>::ZERO_TOLERANCE)
                {
                    break;
                }
            }
            if (j == mQuantity)
            {
                mPoint[mQuantity] = measure[i].Point;
                mTransverse[mQuantity] = measure[i].Transverse;
                if (++mQuantity == 4)
                {
                    break;
                }
            }
        }
    }

    if (mQuantity == 0)
    {
        mIntersectionType = IT_EMPTY;
        return false;
    }

    mIntersectionType = IT_POINT;
    return true;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrEllipse2Ellipse2<Real>::GetQuantity () const
{
    return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector2<Real>& IntrEllipse2Ellipse2<Real>::GetPoint (int i) const
{
    return mPoint[i];
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipse2<Real>& IntrEllipse2Ellipse2<Real>::GetIntersectionEllipse ()
    const
{
    return *mEllipse0;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrEllipse2Ellipse2<Real>::IsTransverseIntersection (int i) const
{
    return mTransverse[i];
}
//----------------------------------------------------------------------------
template <typename Real>
typename IntrEllipse2Ellipse2<Real>::Classification
IntrEllipse2Ellipse2<Real>::GetClassification () const
{
    // Get the parameters of ellipe0.
    Vector2<Real> K0 = mEllipse0->Center;
    Matrix2<Real> R0(mEllipse0->Axis, true);
    Matrix2<Real> D0(
        ((Real)1)/(mEllipse0->Extent[0]*mEllipse0->Extent[0]),
        ((Real)1)/(mEllipse0->Extent[1]*mEllipse0->Extent[1]));

    // Get the parameters of ellipse1.
    Vector2<Real> K1 = mEllipse1->Center;
    Matrix2<Real> R1(mEllipse1->Axis, true);
    Matrix2<Real> D1(
        ((Real)1)/(mEllipse1->Extent[0]*mEllipse1->Extent[0]),
        ((Real)1)/(mEllipse1->Extent[1]*mEllipse1->Extent[1]));

    // Compute K2.
    Matrix2<Real> D0NegHalf(
        mEllipse0->Extent[0],
        mEllipse0->Extent[1]);
    Matrix2<Real> D0Half(
        ((Real)1)/mEllipse0->Extent[0],
        ((Real)1)/mEllipse0->Extent[1]);
    Vector2<Real> K2 = D0Half*((K1 - K0)*R0);

    // Compute M2.
    Matrix2<Real> R1TR0D0NegHalf = R1.TransposeTimes(R0*D0NegHalf);
    Matrix2<Real> M2 = R1TR0D0NegHalf.TransposeTimes(D1)*R1TR0D0NegHalf;

    // Factor M2 = R*D*R^T.
    Matrix2<Real> R, D;
    M2.EigenDecomposition(R, D);

    // Compute K = R^T*K2.
    Vector2<Real> K = K2*R;

    // Transformed ellipsoid0 is Z^T*Z = 1 and transformed ellipsoid1 is
    // (Z-K)^T*D*(Z-K) = 0.

    // The minimum and maximum squared distances from the origin of points on
    // transformed ellipse1 are used to determine whether the ellipses
    // intersect, are separated, or one contains the other.
    Real minSqrDistance = Math<Real>::MAX_REAL;
    Real maxSqrDistance = (Real)0;
    int i;

    if (K == Vector2<Real>::ZERO)
    {
        // The special case of common centers must be handled separately.  It
        // is not possible for the ellipsoids to be separated.
        for (i = 0; i < 2; ++i)
        {
            Real invD = ((Real)1)/D[i][i];
            if (invD < minSqrDistance)
            {
                minSqrDistance = invD;
            }
            if (invD > maxSqrDistance)
            {
                maxSqrDistance = invD;
            }
        }

        if (maxSqrDistance < (Real)1)
        {
            return EC_ELLIPSE0_CONTAINS_ELLIPSE1;
        }
        else if (minSqrDistance > (Real)1)
        {
            return EC_ELLIPSE1_CONTAINS_ELLIPSE0;
        }
        else
        {
            return EC_ELLIPSES_INTERSECTING;
        }
    }

    // The closest point P0 and farthest point P1 are solutions to
    // s0*D*(P0 - K) = P0 and s1*D1*(P1 - K) = P1 for some scalars s0 and s1
    // that are roots to the function
    //   f(s) = d0*k0^2/(d0*s-1)^2 + d1*k1^2/(d1*s-1)^2 - 1
    // where D = diagonal(d0,d1) and K = (k0,k1).
    Real d0 = D[0][0], d1 = D[1][1];
    Real c0 = K2[0]*K2[0], c1 = K2[1]*K2[1];

    // Sort the values so that d0 >= d1.  This allows us to bound the roots of
    // f(s), of which there are at most 4.
    std::vector<std::pair<Real,Real> > param(2);
    if (d0 >= d1)
    {
        param[0] = std::make_pair(d0, c0);
        param[1] = std::make_pair(d1, c1);
    }
    else
    {
        param[0] = std::make_pair(d1, c1);
        param[1] = std::make_pair(d0, c0);
    }

    std::vector<std::pair<Real,Real> > valid;
    valid.reserve(2);
    if (param[0].first > param[1].first)
    {
        // d0 > d1
        for (i = 0; i < 2; ++i)
        {
            if (param[i].second > (Real)0)
            {
                valid.push_back(param[i]);
            }
        }
    }
    else
    {
        // d0 = d1
        param[0].second += param[1].second;
        if (param[0].second > (Real)0)
        {
            valid.push_back(param[0]);
        }
    }

    size_t numValid = valid.size();
    int numRoots;
    Real roots[4];
    if (numValid == 2)
    {
        GetRoots(
            valid[0].first, valid[1].first,
            valid[0].second, valid[1].second,
            numRoots, roots);
    }
    else if (numValid == 1)
    {
        GetRoots(
            valid[0].first,
            valid[0].second,
            numRoots, roots);
    }
    else
    {
        // numValid cannot be zero because we already handled case K = 0
        assertion(false, "Unexpected condition.\n");
        return EC_ELLIPSES_INTERSECTING;
    }

    for (i = 0; i < numRoots; ++i)
    {
        Real s = roots[i];
        Real p0 = d0*K[0]*s/(d0*s - (Real)1);
        Real p1 = d1*K[1]*s/(d1*s - (Real)1);
        Real sqrDistance = p0*p0 + p1*p1;
        if (sqrDistance < minSqrDistance)
        {
            minSqrDistance = sqrDistance;
        }
        if (sqrDistance > maxSqrDistance)
        {
            maxSqrDistance = sqrDistance;
        }
    }

    if (maxSqrDistance < (Real)1)
    {
        return EC_ELLIPSE0_CONTAINS_ELLIPSE1;
    }

    if (minSqrDistance > (Real)1)
    {
        if (d0*c0 + d1*c1 > (Real)1)
        {
            return EC_ELLIPSES_SEPARATED;
        }
        else
        {
            return EC_ELLIPSE1_CONTAINS_ELLIPSE0;
        }
    }

    return EC_ELLIPSES_INTERSECTING;
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrEllipse2Ellipse2<Real>::BisectF (Real d0, Real d1, Real d0c0,
    Real d1c1, Real smin, Real fmin, Real smax, Real fmax, Real& s, Real& f)
{
    bool increasing = (fmin < (Real)0);

    const int maxIterations = 256;
    for (int i = 0; i < maxIterations; ++i)
    {
        s = ((Real)0.5)*(smin + smax);
        if (smin < s)
        {
            if (s < smax)
            {
                Real invN0 = ((Real)1)/(d0*s - (Real)1);
                Real invN1 = ((Real)1)/(d1*s - (Real)1);
                Real invN0Sqr = invN0*invN0;
                Real invN1Sqr = invN1*invN1;
                f = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
                if (f < (Real)0)
                {
                    if (increasing)
                    {
                        smin = s;
                        fmin = f;
                    }
                    else
                    {
                        smax = s;
                        fmax = f;
                    }
                }
                else if (f > (Real)0)
                {
                    if (increasing)
                    {
                        smax = s;
                        fmax = f;
                    }
                    else
                    {
                        smin = s;
                        fmin = f;
                    }
                }
                else
                {
                    break;
                }
            }
            else
            {
                f = fmax;
                break;
            }
        }
        else
        {
            f = fmin;
            break;
        }
    }
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrEllipse2Ellipse2<Real>::BisectDF (Real d0, Real d1, Real d0c0,
    Real d1c1, Real smin, Real dfmin, Real smax, Real dfmax, Real& s,
    Real& df)
{
    const int maxIterations = 256;
    for (int i = 0; i < maxIterations; ++i)
    {
        s = ((Real)0.5)*(smin + smax);
        if (smin < s)
        {
            if (s < smax)
            {
                Real invN0 = ((Real)1)/(d0*s - (Real)1);
                Real invN1 = ((Real)1)/(d1*s - (Real)1);
                Real invN0Cub = invN0*invN0*invN0;
                Real invN1Cub = invN1*invN1*invN1;
                df = ((Real)-2)*(d0*d0c0*invN0Cub + d1*d1c1*invN1Cub);
                if (df < (Real)0)
                {
                    smin = s;
                    dfmin = df;
                }
                else if (df > (Real)0)
                {
                    smax = s;
                    dfmax = df;
                }
                else
                {
                    break;
                }
            }
            else
            {
                df = dfmax;
                break;
            }
        }
        else
        {
            df = dfmin;
            break;
        }
    }
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrEllipse2Ellipse2<Real>::GetRoots (Real d0, Real d1, Real c0,
    Real c1, int& numRoots, Real* roots)
{
    // f(s) = d0*c0/(d0*s-1)^2 + d1*c1/(d1*s-1)^2 - 1
    // with d0 > d1

    numRoots = 0;

    Real epsilon = (Real)0.001;
    Real multiplier0 = Math<Real>::Sqrt(((Real)2)/((Real)1 - epsilon));
    Real multiplier1 = Math<Real>::Sqrt(((Real)1)/((Real)1 + epsilon));
    Real d0c0 = d0*c0;
    Real d1c1 = d1*c1;
    Real sqrtd0c0 = Math<Real>::Sqrt(d0c0);
    Real sqrtd1c1 = Math<Real>::Sqrt(d1c1);
    Real invD0 = ((Real)1)/d0;
    Real invD1 = ((Real)1)/d1;
    Real temp0, temp1, smin, smax, s, fmin, fmax, f;
    Real invN0, invN1, invN0Sqr, invN1Sqr;

    // Compute root in (-infinity,1/d0).
    temp0 = ((Real)1 - multiplier0*sqrtd0c0)*invD0;
    temp1 = ((Real)1 - multiplier0*sqrtd1c1)*invD1;
    smin = (temp0 < temp1 ? temp0 : temp1);
    invN0 = ((Real)1)/(d0*smin - (Real)1);
    invN1 = ((Real)1)/(d1*smin - (Real)1);
    invN0Sqr = invN0*invN0;
    invN1Sqr = invN1*invN1;
    fmin = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
    assertion(fmin < (Real)0, "Unexpected condition.\n");
    smax = ((Real)1 - multiplier1*sqrtd0c0)*invD0;
    invN0 = ((Real)1)/(d0*smax - (Real)1);
    invN1 = ((Real)1)/(d1*smax - (Real)1);
    invN0Sqr = invN0*invN0;
    invN1Sqr = invN1*invN1;
    fmax = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
    assertion(fmax > (Real)0, "Unexpected condition.\n");
    BisectF(d0, d1, d0c0, d1c1, smin, fmin, smax, fmax, s, f);
    roots[numRoots++] = s;

    // Compute roots (if any) in (1/d0,1/d1).
    Real smid, fmid, df;
    BisectDF(d0, d1, d0c0, d1c1, invD0, -Math<Real>::MAX_REAL, invD1,
        Math<Real>::MAX_REAL, smid, df);
    invN0 = ((Real)1)/(d0*smid - (Real)1);
    invN1 = ((Real)1)/(d1*smid - (Real)1);
    invN0Sqr = invN0*invN0;
    invN1Sqr = invN1*invN1;
    fmid = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
    if (fmid < (Real)0)
    {
        BisectF(d0, d1, d0c0, d1c1, invD0, Math<Real>::MAX_REAL, smid, fmid,
            s, f);
        roots[numRoots++] = s;
        BisectF(d0, d1, d0c0, d1c1, smid, fmid, invD1, Math<Real>::MAX_REAL,
            s, f);
        roots[numRoots++] = s;
    }

    // Compute root in (1/d1,+infinity).
    temp0 = ((Real)1 + multiplier0*sqrtd0c0)*invD0;
    temp1 = ((Real)1 + multiplier0*sqrtd1c1)*invD1;
    smax = (temp0 > temp1 ? temp0 : temp1);
    invN0 = ((Real)1)/(d0*smax - (Real)1);
    invN1 = ((Real)1)/(d1*smax - (Real)1);
    invN0Sqr = invN0*invN0;
    invN1Sqr = invN1*invN1;
    fmax = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
    assertion(fmax < (Real)0, "Unexpected condition.\n");
    smin = ((Real)1 + multiplier1*sqrtd1c1)*invD1;
    invN0 = ((Real)1)/(d0*smin - (Real)1);
    invN1 = ((Real)1)/(d1*smin - (Real)1);
    invN0Sqr = invN0*invN0;
    invN1Sqr = invN1*invN1;
    fmin = d0c0*invN0Sqr + d1c1*invN1Sqr - (Real)1;
    assertion(fmin > (Real)0, "Unexpected condition.\n");
    BisectF(d0, d1, d0c0, d1c1, smin, fmin, smax, fmax, s, f);
    roots[numRoots++] = s;
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrEllipse2Ellipse2<Real>::GetRoots (Real d0, Real c0,
    int& numRoots, Real* roots)
{
    // f(s) = d0*c0/(d0*s-1)^2 - 1
    Real temp = Math<Real>::Sqrt(d0*c0);
    Real inv = ((Real)1)/d0;
    numRoots = 2;
    roots[0] = ((Real)1 - temp)*inv;
    roots[1] = ((Real)1 + temp)*inv;
}
//----------------------------------------------------------------------------
template <typename Real>
Polynomial1<Real> IntrEllipse2Ellipse2<Real>::GetQuartic (
    const Ellipse2<Real>& ellipse0, const Ellipse2<Real>& ellipse1)
{
    Real p0[6], p1[6];
    ellipse0.ToCoefficients(p0);
    ellipse1.ToCoefficients(p1);

    // The polynomials are
    //   P0 = a0 + a1*x + a2*y + a3*x^2 + a4*x*y + a5*y^2
    //      = (a0 + a2*y + a5*y^2) + (a1 + a4*y)*x + (a3)*x^2
    //      = u0(y) + u1(y)*x + u2(y)*x^2
    //   P1 = b0 + b1*x + b2*y + b3*x^2 + b4*x*y + b5*y^2
    //      = (b0 + b2*y + b5*y^2) + (b1 + b4*y)*x + (b3)*x^2
    //      = v0(y) + v1(y)*x + v2(y)*x^2
    // The Bezout determinant eliminates the variable x when solving the
    // equations P0(x,y) = 0 and P1(x,y) = 0.  We have
    //   0 = P0 = u0 + u1*x + u2*x^2
    //   0 = P1 = v0 + v1*x + v2*x^2
    //   0 = v2*P0 - u2*P1 = (u0*v2 - u2*v0) + (u1*v2 - u2*v1)*x
    //   0 = v1*P0 - u1*P1 = (u0*v1 - u1*v0) + (u2*v1 - u1*v2)*x^2
    // Solve the equation 0 = v2*P0-u2*P1 for x and substitute in the other
    // equation and simplify to
    //   Q(y) = (u0*v1-v1*u0)*(u1*v2-u2*v1) - (u0*v2-u2*v0)^2 = 0
    //        = c0 + c1*y + c2*y^2 + c3*y^3 + c4*y^4
    // Define dij = ai*bj - aj*bi for various indices i and j.  For example,
    // d01 = a0*b1-b1*a0.  The coefficients of Q(y) are
    //   c0 = d01*d13 - d30^2
    //   c1 = d01*d43 + (d04+d21)*d13 - 2*d30*d32
    //   c2 = (d04+d21)*d43 + (d24+d51)*d13 - 2*d30*d35 - d32^2
    //   c3 = (d24+d51)*d43 + d54*d13 - 2*d32*d35
    //   c4 = d54*d43 - d35^2

    Real d01 = p0[0]*p1[1] - p0[1]*p1[0];
    Real d04 = p0[0]*p1[4] - p0[4]*p1[0];
    Real d13 = p0[1]*p1[3] - p0[3]*p1[1];
    Real d21 = p0[2]*p1[1] - p0[1]*p1[2];
    Real d24 = p0[2]*p1[4] - p0[4]*p1[2];
    Real d30 = p0[3]*p1[0] - p0[0]*p1[3];
    Real d32 = p0[3]*p1[2] - p0[2]*p1[3];
    Real d35 = p0[3]*p1[5] - p0[5]*p1[3];
    Real d43 = p0[4]*p1[3] - p0[3]*p1[4];
    Real d51 = p0[5]*p1[1] - p0[1]*p1[5];
    Real d54 = p0[5]*p1[4] - p0[4]*p1[5];
    Real d04p21 = d04 + d21;
    Real d24p51 = d24 + d51;

    Polynomial1<Real> poly(4);
    poly[0] = d01*d13 - d30*d30;
    poly[1] = d01*d43 + d04p21*d13 - ((Real)2)*d30*d32;
    poly[2] = d04p21*d43 + d24p51*d13 - ((Real)2)*d30*d35 - d32*d32;
    poly[3] = d24p51*d43 + d54*d13 - ((Real)2)*d32*d35;
    poly[4] = d54*d43 - d35*d35;

    return poly;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrEllipse2Ellipse2<Real>::RefinePoint (const Real coeff[6],
    Vector2<Real>& point, Real& q0, Real& q1, Real& angle0)
{
    // The incoming polynomial is
    //   f(angle) = d0 + d1*c + d2*s + d3*c^2 + d4*c*s + d5*s^2
    // where s = sin(angle) and c = cos(angle).  The derivative is
    //   f'(angle) = -d1*s + d2*c + (d5 - d3)*2*c*s + d4*(c^2 - s^2)

    Vector2<Real> diff = point - mEllipse0->Center;
    Real cs = diff.Dot(mEllipse0->Axis[0])/mEllipse0->Extent[0];
    Real sn = diff.Dot(mEllipse0->Axis[1])/mEllipse0->Extent[1];
    Real a0 = Math<Real>::ATan2(sn, cs);
    Real f0 = coeff[0] + coeff[1]*cs + coeff[2]*sn + coeff[3]*cs*cs +
        coeff[4]*cs*sn + coeff[5]*sn*sn;
    Real df0 = -coeff[1]*sn + coeff[2]*cs +
        ((Real)2)*(coeff[5] - coeff[3])*cs*sn +
        coeff[4]*(cs*cs - sn*sn);

    Real a1 = (Real)0, f1, df1;

    // The value f0 should match q1 (to within floating-point round-off
    // error).  Try to force f0 to zero using bisection.  This requires
    // finding an angle such that the corresponding function value is
    // opposite in sign to f0.  If the search fails, the input point is
    // either a tangential intersection or not an intersection at all.
    int maxIterations = 32;
    int i;
    for (i = 0; i < maxIterations; ++i)
    {
        a1 = a0 - f0/df0;
        cs = Math<Real>::Cos(a1);
        sn = Math<Real>::Sin(a1);
        f1 = coeff[0] + coeff[1]*cs + coeff[2]*sn + coeff[3]*cs*cs +
            coeff[4]*cs*sn + coeff[5]*sn*sn;

        if (f0*f1 < (Real)0)
        {
            // Switch to bisection.
            break;
        }

        df1 = -coeff[1]*sn + coeff[2]*cs +
            ((Real)2)*(coeff[5] - coeff[3])*cs*sn +
            coeff[4]*(cs*cs - sn*sn);

        if (df1*df0 < (Real)0)
        {
            // Try a steeper slope in hopes of finding an opposite sign
            // value.
            df0 *= (Real)2;
            continue;
        }

        if (Math<Real>::FAbs(f1) < Math<Real>::FAbs(f0))
        {
            // We failed to find an opposite-sign value, but the new
            // function value is closer to zero, so try again with the
            // new value.
            a0 = a1;
            f0 = f1;
            df0 = df1;
        }
    }

    Real angle = a0;
    bool transverse;
    if (i < maxIterations)
    {
        // Apply bisection.  Determine number of iterations to get 10 digits
        // of accuracy.
        Real tmp0 = Math<Real>::Log(Math<Real>::FAbs(a1 - a0));
        Real tmp1 = ((Real)DIGITS_ACCURACY)*Math<Real>::Log((Real)10);
        Real arg = (tmp0 + tmp1)/Math<Real>::Log((Real)2);
        maxIterations = (int)(arg + (Real)0.5);
        for (i = 0; i < maxIterations; ++i)
        {
            angle = ((Real)0.5)*(a0 + a1);
            cs = Math<Real>::Cos(angle);
            sn = Math<Real>::Sin(angle);
            f1 = coeff[0] + coeff[1]*cs + coeff[2]*sn + coeff[3]*cs*cs +
                coeff[4]*cs*sn + coeff[5]*sn*sn;

            Real product = f0*f1;
            if (product < (Real)0)
            {
                a1 = angle;
            }
            else if (product > (Real)0)
            {
                a0 = angle;
                f0 = f1;
            }
            else
            {
                break;
            }
        }
        transverse = true;
    }
    else
    {
        transverse = false;
    }

    point = mEllipse0->Center +
        mEllipse0->Extent[0]*cs*mEllipse0->Axis[0] +
        mEllipse0->Extent[1]*sn*mEllipse0->Axis[1];

    q0 = mEllipse0->Evaluate(point);
    q1 = mEllipse1->Evaluate(point);
    angle0 = angle;

    return transverse;
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// IntrEllipse2Ellipse2::Measurement
//----------------------------------------------------------------------------
template <typename Real>
IntrEllipse2Ellipse2<Real>::Measurement::Measurement ()
    :
    Point(Math<Real>::MAX_REAL, Math<Real>::MAX_REAL),
    Q0(Math<Real>::MAX_REAL),
    Q1(Math<Real>::MAX_REAL),
    Norm(Math<Real>::MAX_REAL),
    Angle0(Math<Real>::MAX_REAL),
    Transverse(false)
{
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrEllipse2Ellipse2<Real>::Measurement::operator< (
    const Measurement& measure) const
{
    if (Transverse == measure.Transverse)
    {
        return Norm < measure.Norm;
    }
    else
    {
        return Transverse;
    }
}
//----------------------------------------------------------------------------

//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrEllipse2Ellipse2<float>;

template WM5_MATHEMATICS_ITEM
class IntrEllipse2Ellipse2<double>;
//----------------------------------------------------------------------------
}