1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2012/11/03)
#include "Wm5MathematicsPCH.h"
#include "Wm5IntrLine3Ellipsoid3.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
IntrLine3Ellipsoid3<Real>::IntrLine3Ellipsoid3 (const Line3<Real>& line,
const Ellipsoid3<Real>& ellipsoid)
:
mLine(&line),
mEllipsoid(&ellipsoid),
mNegativeThreshold((Real)0),
mPositiveThreshold((Real)0)
{
}
//----------------------------------------------------------------------------
template <typename Real>
const Line3<Real>& IntrLine3Ellipsoid3<Real>::GetLine () const
{
return *mLine;
}
//----------------------------------------------------------------------------
template <typename Real>
const Ellipsoid3<Real>& IntrLine3Ellipsoid3<Real>::GetEllipsoid () const
{
return *mEllipsoid;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Ellipsoid3<Real>::Test ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is X = P+t*D.
// Substitute the line equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mLine->Origin - mEllipsoid->Center;
Vector3<Real> matDir = M*mLine->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mLine->Direction.Dot(matDir);
Real a1 = mLine->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// Intersection occurs if Q(t) has real roots.
Real discr = a1*a1 - a0*a2;
return discr >= mNegativeThreshold;
}
//----------------------------------------------------------------------------
template <typename Real>
bool IntrLine3Ellipsoid3<Real>::Find ()
{
// The ellipsoid is (X-K)^T*M*(X-K)-1 = 0 and the line is X = P+t*D.
// Substitute the line equation into the ellipsoid equation to obtain
// a quadratic equation
// Q(t) = a2*t^2 + 2*a1*t + a0 = 0
// where a2 = D^T*M*D, a1 = D^T*M*(P-K), and a0 = (P-K)^T*M*(P-K)-1.
Matrix3<Real> M;
mEllipsoid->GetM(M);
Vector3<Real> diff = mLine->Origin - mEllipsoid->Center;
Vector3<Real> matDir = M*mLine->Direction;
Vector3<Real> matDiff = M*diff;
Real a2 = mLine->Direction.Dot(matDir);
Real a1 = mLine->Direction.Dot(matDiff);
Real a0 = diff.Dot(matDiff) - (Real)1;
// Intersection occurs if Q(t) has real roots.
Real discr = a1*a1 - a0*a2;
Real t[2];
if (discr < mNegativeThreshold)
{
mIntersectionType = IT_EMPTY;
mQuantity = 0;
}
else if (discr > mPositiveThreshold)
{
mIntersectionType = IT_SEGMENT;
mQuantity = 2;
Real root = Math<Real>::Sqrt(discr);
Real inv = ((Real)1)/a2;
t[0] = (-a1 - root)*inv;
t[1] = (-a1 + root)*inv;
mPoint[0] = mLine->Origin + t[0]*mLine->Direction;
mPoint[1] = mLine->Origin + t[1]*mLine->Direction;
}
else
{
mIntersectionType = IT_POINT;
mQuantity = 1;
t[0] = -a1/a2;
mPoint[0] = mLine->Origin + t[0]*mLine->Direction;
}
return mIntersectionType != IT_EMPTY;
}
//----------------------------------------------------------------------------
template <typename Real>
int IntrLine3Ellipsoid3<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
const Vector3<Real>& IntrLine3Ellipsoid3<Real>::GetPoint (int i) const
{
return mPoint[i];
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrLine3Ellipsoid3<Real>::SetNegativeThreshold (Real negThreshold)
{
if (negThreshold <= (Real)0)
{
mNegativeThreshold = negThreshold;
return;
}
assertion(false, "Negative threshold must be nonpositive.");
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Ellipsoid3<Real>::GetNegativeThreshold () const
{
return mNegativeThreshold;
}
//----------------------------------------------------------------------------
template <typename Real>
void IntrLine3Ellipsoid3<Real>::SetPositiveThreshold (Real posThreshold)
{
if (posThreshold >= (Real)0)
{
mPositiveThreshold = posThreshold;
return;
}
assertion(false, "Positive threshold must be nonnegative.");
}
//----------------------------------------------------------------------------
template <typename Real>
Real IntrLine3Ellipsoid3<Real>::GetPositiveThreshold () const
{
return mPositiveThreshold;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template WM5_MATHEMATICS_ITEM
class IntrLine3Ellipsoid3<float>;
template WM5_MATHEMATICS_ITEM
class IntrLine3Ellipsoid3<double>;
//----------------------------------------------------------------------------
}
|