1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.3 (2012/11/03)
#include "Wm5MathematicsPCH.h"
#include "Wm5PolynomialRootsR.h"
#include "Wm5Math.h"
namespace Wm5
{
//----------------------------------------------------------------------------
template <typename Real>
PolynomialRootsR<Real>::PolynomialRootsR ()
{
mQuantity = 0;
}
//----------------------------------------------------------------------------
template <typename Real>
PolynomialRootsR<Real>::~PolynomialRootsR ()
{
}
//----------------------------------------------------------------------------
template <typename Real>
int PolynomialRootsR<Real>::GetQuantity () const
{
return mQuantity;
}
//----------------------------------------------------------------------------
template <typename Real>
Real PolynomialRootsR<Real>::GetRoot (int i) const
{
assertion(0 <= i && i < mQuantity, "Invalid index\n");
return mRoot[i];
}
//----------------------------------------------------------------------------
template <typename Real>
int PolynomialRootsR<Real>::GetMultiplicity (int i) const
{
assertion(0 <= i && i < mQuantity, "Invalid index\n");
return mMultiplicity[i];
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Linear (Real c0, Real c1)
{
if (c1 != (Real)0)
{
// The equation is c1*x + c0 = 0, where c1 is not zero.
PRational ratRoot = PRational(-c0)/PRational(c1);
mQuantity = 1;
ratRoot.ConvertTo(mRoot[0]);
mMultiplicity[0] = 1;
return true;
}
if (c0 != (Real)0)
{
// The equation is c0 = 0, where c0 is not zero, so there are no
// solutions.
mQuantity = 0;
return false;
}
// The polynomial equation is a tautology, 0 = 0, so there are
// infinitely many solutions.
mQuantity = INFINITE_QUANTITY;
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Linear (const PRational& c0,
const PRational& c1)
{
if (c1 != msZero)
{
// The equation is c1*x + c0 = 0, where c1 is not zero.
PRational ratRoot = c0/c1;
mQuantity = 1;
ratRoot.ConvertTo(mRoot[0]);
mRoot[0] = -mRoot[0];
mMultiplicity[0] = 1;
return true;
}
if (c0 != msZero)
{
// The equation is c0 = 0, where c0 is not zero, so there are no
// solutions.
mQuantity = 0;
return false;
}
// The polynomial equation is a tautology, 0 = 0, so there are
// infinitely many solutions.
mQuantity = INFINITE_QUANTITY;
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quadratic (Real c0, Real c1, Real c2)
{
if (c2 == (Real)0)
{
return Linear(c0, c1);
}
// The equation is c2*x^2 + c1*x + c0 = 0, where c2 is not zero.
PRational ratC0(c0), ratC1(c1), ratC2(c2);
// Create a monic polynomial, x^2 + a1*x + a0 = 0.
PRational ratInvC2 = msOne/ratC2;
PRational ratA1 = ratC1*ratInvC2;
PRational ratA0 = ratC0*ratInvC2;
// Solve the equation.
return Quadratic(ratA0, ratA1);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quadratic (const PRational& c0,
const PRational& c1, const PRational& c2)
{
if (c2 == msZero)
{
return Linear(c0, c1);
}
// The equation is c2*x^2 + c1*x + c0 = 0, where c2 is not zero. Create
// a monic polynomial, x^2 + a1*x + a0 = 0.
PRational ratInvC2 = msOne/c2;
PRational ratA1 = c1*ratInvC2;
PRational ratA0 = c0*ratInvC2;
// Solve the equation.
return Quadratic(ratA0, ratA1);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quadratic (const PRational& a0,
const PRational& a1)
{
PRational ratMHalf(-1,2);
PRational ratMA1Div2 = ratMHalf*a1;
PRational ratDiscr = ratMA1Div2*ratMA1Div2 - a0;
if (ratDiscr > msZero)
{
// Two distinct real-valued roots.
mQuantity = 2;
// Estimate the discriminant.
double discr;
ratDiscr.ConvertTo(discr);
assertion(discr > 0.0, "Unexpected condition\n");
discr = Mathd::Sqrt(discr);
ratDiscr = PRational(discr);
PRational ratRoot0 = ratMA1Div2 - ratDiscr;
PRational ratRoot1 = ratMA1Div2 + ratDiscr;
ratRoot0.ConvertTo(mRoot[0]);
ratRoot1.ConvertTo(mRoot[1]);
mMultiplicity[0] = 1;
mMultiplicity[1] = 1;
}
else if (ratDiscr == msZero)
{
// One repeated real-valued root.
mQuantity = 1;
ratMA1Div2.ConvertTo(mRoot[0]);
mMultiplicity[0] = 2;
}
else
{
// No real-valued roots.
mQuantity = 0;
}
return mQuantity > 0;
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Cubic (Real c0, Real c1, Real c2, Real c3)
{
if (c3 == (Real)0)
{
return Quadratic(c0, c1, c2);
}
// The equation is c3*x^3 c2*x^2 + c1*x + c0 = 0, where c3 is not zero.
PRational ratC0(c0), ratC1(c1), ratC2(c2), ratC3(c3);
// Create a monic polynomial, x^3 + a2*x^2 + a1*x + a0 = 0.
PRational ratInvC3 = msOne/ratC3;
PRational ratA2 = ratC2*ratInvC3;
PRational ratA1 = ratC1*ratInvC3;
PRational ratA0 = ratC0*ratInvC3;
// Solve the equation.
return Cubic(ratA0, ratA1, ratA2);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Cubic (const PRational& c0,
const PRational& c1, const PRational& c2, const PRational& c3)
{
if (c3 == msZero)
{
return Quadratic(c0, c1, c2);
}
// The equation is c3*x^3 c2*x^2 + c1*x + c0 = 0, where c3 is not zero.
// Create a monic polynomial, x^3 + a2*x^2 + a1*x + a0 = 0.
PRational ratInvC3 = msOne/c3;
PRational ratA2 = c2*ratInvC3;
PRational ratA1 = c1*ratInvC3;
PRational ratA0 = c0*ratInvC3;
// Solve the equation.
return Cubic(ratA0, ratA1, ratA2);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Cubic (const PRational& a0,
const PRational& a1, const PRational& a2)
{
// Reduce the equation to y^3 + b1*y + b0 = 0.
PRational ratHalf(1,2), ratThird(1,3), ratTwo(2);
PRational ratA2Div3 = ratThird*a2;
PRational ratA2Div3Sqr = ratA2Div3*ratA2Div3;
PRational ratA2Div3Cube = ratA2Div3*ratA2Div3Sqr;
PRational ratB1 = a1 - ratA2Div3*a2;
PRational ratB0 = a0 - a1*ratA2Div3 + ratTwo*ratA2Div3Cube;
// Solve the equation.
PRational ratQ = ratThird*ratB1, ratR = ratHalf*ratB0;
PRational ratDiscr = ratR*ratR + ratQ*ratQ*ratQ;
if (ratDiscr > msZero)
{
// One real-valued root, two complex-valued conjugate roots.
mQuantity = 1;
// Estimate the discriminant.
double discr;
ratDiscr.ConvertTo(discr);
assertion(discr > 0.0, "Unexpected condition\n");
discr = Mathd::Sqrt(discr);
const double third = 1.0/3.0;
ratDiscr = PRational(discr);
PRational ratSum0 = -ratR + ratDiscr;
double sum0;
ratSum0.ConvertTo(sum0);
if (sum0 >= 0.0)
{
sum0 = Mathd::Pow(sum0, third);
}
else
{
sum0 = -Mathd::Pow(-sum0, third);
}
ratSum0 = PRational(sum0);
PRational ratSum1 = -ratR - ratDiscr;
double sum1;
ratSum1.ConvertTo(sum1);
if (sum1 >= 0.0)
{
sum1 = Mathd::Pow(sum1, third);
}
else
{
sum1 = -Mathd::Pow(-sum1, third);
}
ratSum1 = PRational(sum1);
PRational ratRoot = ratSum0 + ratSum1 - ratA2Div3;
ratRoot.ConvertTo(mRoot[0]);
mMultiplicity[0] = 1;
}
else if (ratDiscr < msZero)
{
// Three distinct real-valued roots.
mQuantity = 3;
mMultiplicity[0] = 1;
mMultiplicity[1] = 1;
mMultiplicity[2] = 1;
// Compute the eigenvalues by solving for the roots of the polynomial.
double negQ;
ratQ.ConvertTo(negQ);
negQ = -negQ;
assertion(negQ > 0.0, "Unexpected condition\n");
double negR;
ratR.ConvertTo(negR);
negR = -negR;
double negDiscr;
ratDiscr.ConvertTo(negDiscr);
negDiscr = -negDiscr;
double negA2d3;
ratA2Div3.ConvertTo(negA2d3);
negA2d3 = -negA2d3;
double sqrt3 = Mathd::Sqrt(3.0);
double magnitude = Mathd::Sqrt(negQ);
double angle = Mathd::ATan2(Mathd::Sqrt(negDiscr), negR)/3.0;
double cs = Mathd::Cos(angle);
double sn = Mathd::Sin(angle);
double root0 = negA2d3 + 2.0*magnitude*cs;
double root1 = negA2d3 - magnitude*(cs + sqrt3*sn);
double root2 = negA2d3 - magnitude*(cs - sqrt3*sn);
// Sort in increasing order.
if (root1 >= root0)
{
mRoot[0] = (Real)root0;
mRoot[1] = (Real)root1;
}
else
{
mRoot[0] = (Real)root1;
mRoot[1] = (Real)root0;
}
if (root2 >= (double)mRoot[1])
{
mRoot[2] = (Real)root2;
}
else
{
mRoot[2] = mRoot[1];
if (root2 >= (double)mRoot[0])
{
mRoot[1] = (Real)root2;
}
else
{
mRoot[1] = mRoot[0];
mRoot[0] = (Real)root2;
}
}
}
else
{
// Three real-valued roots, at least two of which are equal.
if (ratQ != msZero)
{
// Two real-valued roots, one repeated.
mQuantity = 2;
const double third = 1.0/3.0;
double r;
ratR.ConvertTo(r);
if (r >= 0.0)
{
r = Mathd::Pow(r, third);
}
else
{
r = -Mathd::Pow(-r, third);
}
ratR = PRational(r);
PRational ratRoot0 = ratA2Div3 - ratR;
ratRoot0.ConvertTo(mRoot[0]);
mRoot[0] = -mRoot[0];
mMultiplicity[0] = 2;
PRational ratRoot1 = ratA2Div3 + ratTwo*ratR;
ratRoot1.ConvertTo(mRoot[1]);
mRoot[1] = -mRoot[1];
mMultiplicity[1] = 1;
if (mRoot[1] < mRoot[0])
{
Real save = mRoot[0];
mRoot[0] = mRoot[1];
mRoot[1] = save;
int isave = mMultiplicity[0];
mMultiplicity[0] = mMultiplicity[1];
mMultiplicity[1] = isave;
}
}
else
{
// One real-valued root, all repeated.
mQuantity = 1;
ratA2Div3.ConvertTo(mRoot[0]);
mRoot[0] = -mRoot[0];
mMultiplicity[0] = 3;
}
}
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quartic (Real c0, Real c1, Real c2, Real c3,
Real c4)
{
if (c4 == (Real)0)
{
return Cubic(c0, c1, c2, c3);
}
// The equation is c4*x^4 + c3*x^3 c2*x^2 + c1*x + c0 = 0, where c3 is
// not zero.
PRational ratC0(c0), ratC1(c1), ratC2(c2), ratC3(c3), ratC4(c4);
// Create a monic polynomial, x^4 + a3*x^3 + a2*x^2 + a1*x + a0 = 0.
PRational ratInvC4 = msOne/ratC4;
PRational ratA3 = ratC3*ratInvC4;
PRational ratA2 = ratC2*ratInvC4;
PRational ratA1 = ratC1*ratInvC4;
PRational ratA0 = ratC0*ratInvC4;
// Solve the equation.
return Quartic(ratA0, ratA1, ratA2, ratA3);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quartic (const PRational& c0,
const PRational& c1, const PRational& c2, const PRational& c3,
const PRational& c4)
{
if (c4 == msZero)
{
return Cubic(c0, c1, c2, c3);
}
// The equation is c4*x^4 + c3*x^3 c2*x^2 + c1*x + c0 = 0, where c3 is
// not zero. Create a monic polynomial,
// x^4 + a3*x^3 + a2*x^2 + a1*x + a0 = 0.
PRational ratInvC4 = msOne/c4;
PRational ratA3 = c3*ratInvC4;
PRational ratA2 = c2*ratInvC4;
PRational ratA1 = c1*ratInvC4;
PRational ratA0 = c0*ratInvC4;
// Solve the equation.
return Quartic(ratA0, ratA1, ratA2, ratA3);
}
//----------------------------------------------------------------------------
template <typename Real>
bool PolynomialRootsR<Real>::Quartic (const PRational& a0,
const PRational& a1, const PRational& a2, const PRational& a3)
{
mQuantity = 0;
// Reduction to resolvent cubic polynomial y^3 + r2*y^2 + r1*y + r0 = 0.
PRational ratHalf(1,2), ratFourth(1,4), ratEighth(1,8);
PRational ratFour(4), ratTwo(2);
PRational ratR2 = -ratHalf*a2;
PRational ratR1 = ratFourth*a1*a3 - a0;
PRational ratR0 = -ratEighth*(a1*a1 + a0*(a3*a3 - ratFour*a2));
// This always produces at least one root.
PolynomialRootsR<Real> poly;
poly.Cubic(ratR0, ratR1, ratR2);
PRational ratY(poly.GetRoot(0));
PRational ratAlphaSqr = ratFourth*a3*a3 - a2 + ratTwo*ratY;
double alphaSqr;
ratAlphaSqr.ConvertTo(alphaSqr);
if (alphaSqr < 0.0)
{
return false;
}
int i;
if (alphaSqr > 0.0)
{
double alpha = Mathd::Sqrt(alphaSqr);
PRational ratAlpha = PRational(alpha);
PRational ratBeta = ratHalf*(a3*ratY - a1)/ratAlpha;
PRational ratB0 = ratY - ratBeta;
PRational ratB1 = ratHalf*a3 - ratAlpha;
poly.Quadratic(ratB0, ratB1);
for (i = 0; i < poly.GetQuantity(); ++i)
{
mRoot[mQuantity] = poly.GetRoot(i);
mMultiplicity[mQuantity] = poly.GetMultiplicity(i);
++mQuantity;
}
ratB0 = ratY + ratBeta;
ratB1 = ratHalf*a3 + ratAlpha;
poly.Quadratic(ratB0, ratB1);
for (i = 0; i < poly.GetQuantity(); ++i)
{
mRoot[mQuantity] = poly.GetRoot(i);
mMultiplicity[mQuantity] = poly.GetMultiplicity(i);
++mQuantity;
}
SortRoots();
return mQuantity > 0;
}
PRational ratBetaSqr = ratY*ratY - a0;
double betaSqr;
ratBetaSqr.ConvertTo(betaSqr);
if (betaSqr < 0.0)
{
return false;
}
if (betaSqr > 0.0)
{
double beta = Mathd::Sqrt(betaSqr);
PRational ratBeta(beta);
PRational ratB0 = ratY - ratBeta;
PRational ratB1 = ratHalf*a3;
poly.Quadratic(ratB0, ratB1);
for (i = 0; i < poly.GetQuantity(); ++i)
{
mRoot[mQuantity] = poly.GetRoot(i);
mMultiplicity[mQuantity] = poly.GetMultiplicity(i);
++mQuantity;
}
ratB0 = ratY + ratBeta;
poly.Quadratic(ratB0, ratB1);
for (i = 0; i < poly.GetQuantity(); ++i)
{
mRoot[mQuantity] = poly.GetRoot(i);
mMultiplicity[mQuantity] = poly.GetMultiplicity(i);
++mQuantity;
}
SortRoots();
return mQuantity > 0;
}
poly.Quadratic(ratY, ratHalf*a3);
for (i = 0; i < poly.GetQuantity(); ++i)
{
mRoot[mQuantity] = poly.GetRoot(i);
mMultiplicity[mQuantity] = 2*poly.GetMultiplicity(i);
++mQuantity;
}
return mQuantity > 0;
}
//----------------------------------------------------------------------------
template <typename Real>
void PolynomialRootsR<Real>::SortRoots ()
{
// Sort the roots as: root[0] <= ... <= root[quantity-1].
int i0, i1;
for (i0 = 0; i0 <= mQuantity-2; ++i0)
{
// Locate the minimum root.
i1 = i0;
Real minRoot = mRoot[i1];
int minMult = mMultiplicity[i1];
for (int i2 = i0 + 1; i2 < mQuantity; ++i2)
{
if (mRoot[i2] < minRoot)
{
i1 = i2;
minRoot = mRoot[i1];
minMult = mMultiplicity[i1];
}
}
if (i1 != i0)
{
// Swap the roots and multiplicities.
mRoot[i1] = mRoot[i0];
mRoot[i0] = minRoot;
mMultiplicity[i1] = mMultiplicity[i0];
mMultiplicity[i0] = minMult;
}
}
// Combine the multiplicities, if necessary.
for (i0 = 0; i0 < mQuantity-1; /**/)
{
if (mRoot[i0] == mRoot[i0+1])
{
// Combine the multiplicities.
mMultiplicity[i0] += mMultiplicity[i0+1];
// Eliminate the redundant root by shifting the array elements.
mQuantity--;
for (i1 = i0 + 1; i1 < mQuantity; i1++)
{
mRoot[i1] = mRoot[i1+1];
mMultiplicity[i1] = mMultiplicity[i1+1];
}
}
else
{
i0++;
}
}
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Explicit instantiation.
//----------------------------------------------------------------------------
template<> const PolynomialRootsR<float>::PRational
PolynomialRootsR<float>::msZero(0);
template<> const PolynomialRootsR<float>::PRational
PolynomialRootsR<float>::msOne(1);
template WM5_MATHEMATICS_ITEM
class PolynomialRootsR<float>;
template<> const PolynomialRootsR<double>::PRational
PolynomialRootsR<double>::msZero(0);
template<> const PolynomialRootsR<double>::PRational
PolynomialRootsR<double>::msOne(1);
template WM5_MATHEMATICS_ITEM
class PolynomialRootsR<double>;
//----------------------------------------------------------------------------
}
|