1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
#include "ConformalMapping.h"
WM5_WINDOW_APPLICATION(ConformalMapping);
//----------------------------------------------------------------------------
ConformalMapping::ConformalMapping ()
:
WindowApplication3("SampleImagics/ConformalMapping", 0, 0, 640, 480,
Float4(0.5f, 0.0f, 1.0f, 1.0f)),
mTextColor(1.0f, 1.0f, 1.0f, 1.0f)
{
}
//----------------------------------------------------------------------------
bool ConformalMapping::OnInitialize ()
{
if (!WindowApplication3::OnInitialize())
{
return false;
}
// Set up the camera.
mCamera->SetFrustum(60.0f, GetAspectRatio(), 0.1f, 100.0f);
APoint camPosition(0.0f, 0.0f, -6.5f);
AVector camDVector(0.0f, 0.0f, 1.0f);
AVector camUVector(0.0f, 1.0f, 0.0f);
AVector camRVector = camDVector.Cross(camUVector);
mCamera->SetFrame(camPosition, camDVector, camUVector, camRVector);
CreateScene();
// Initial update of objects.
mScene->Update();
// Initial culling of scene.
mCuller.SetCamera(mCamera);
mCuller.ComputeVisibleSet(mScene);
InitializeCameraMotion(0.01f, 0.01f);
InitializeObjectMotion(mScene);
return true;
}
//----------------------------------------------------------------------------
void ConformalMapping::OnTerminate ()
{
mScene = 0;
mMeshTree = 0;
mSphereTree = 0;
mWireState = 0;
WindowApplication3::OnTerminate();
}
//----------------------------------------------------------------------------
void ConformalMapping::OnIdle ()
{
MeasureTime();
if (MoveCamera())
{
mCuller.ComputeVisibleSet(mScene);
}
if (MoveObject())
{
mScene->Update();
mCuller.ComputeVisibleSet(mScene);
}
if (mRenderer->PreDraw())
{
mRenderer->ClearBuffers();
mRenderer->Draw(mCuller.GetVisibleSet());
DrawFrameRate(8, GetHeight()-8, mTextColor);
mRenderer->PostDraw();
mRenderer->DisplayColorBuffer();
}
UpdateFrameCount();
}
//----------------------------------------------------------------------------
bool ConformalMapping::OnKeyDown (unsigned char key, int x, int y)
{
switch (key)
{
case 'w':
mWireState->Enabled = !mWireState->Enabled;
return true;
case 'm':
mMotionObject = mMeshTree;
return true;
case 's':
mMotionObject = mSphereTree;
return true;
case 'r':
mMotionObject = mScene;
return true;
}
return WindowApplication3::OnKeyDown(key, x, y);
}
//----------------------------------------------------------------------------
void ConformalMapping::CreateScene ()
{
// Load the brain mesh. The mesh must have the topology of a sphere.
std::string brainFile = Environment::GetPathR("BrainP.wmvf");
Visual::PrimitiveType type;
VertexFormat* vformat0;
VertexBuffer* vbuffer0;
IndexBuffer* ibuffer;
Visual::LoadWMVF(brainFile, type, vformat0, vbuffer0, ibuffer);
VertexBufferAccessor vba0(vformat0, vbuffer0);
// The mesh has only positions. Reallocate the vertex buffer to include
// vertex colors.
VertexFormat* vformat1 = VertexFormat::Create(2,
VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);
int vstride1 = vformat1->GetStride();
VertexBuffer* vbuffer1 = new0 VertexBuffer(vba0.GetNumVertices(),
vstride1);
VertexBufferAccessor vba1(vformat1, vbuffer1);
for (int i = 0; i < vba0.GetNumVertices(); ++i)
{
vba1.Position<Float3>(i) = vba0.Position<Float3>(i);
}
TriMesh* mesh = new0 TriMesh(vformat1, vbuffer1, ibuffer);
delete0(vformat0);
delete0(vbuffer0);
// Map the data to the cube [-10,10]^3. This provides numerical
// preconditioning for computing the conformal map. The choice of 10 is
// based on knowledge of the magnitude of the positions of vbuffer0.
float extreme = 10.0f;
ScaleToCube(extreme, mesh);
// Use pseudocoloring based on mean curvature.
PseudocolorVertices(mesh);
// Compute the conformal map between the mesh and a sphere.
TriMesh* sphere = DoMapping(mesh);
// Use vertex coloring.
VertexColor3Effect* effect = new0 VertexColor3Effect();
mesh->SetEffectInstance(effect->CreateInstance());
sphere->SetEffectInstance(effect->CreateInstance());
// Create the root of the scene graph.
mScene = new0 Node();
mWireState = new0 WireState();
mRenderer->SetOverrideWireState(mWireState);
// Subtree for mesh. This allows for a virtual trackball centered on
// the mesh.
mMeshTree = new0 Node();
mMeshTree->LocalTransform.SetTranslate(APoint(2.0f, 0.0f, 0.0f));
mMeshTree->LocalTransform.SetUniformScale(1.0f/extreme);
mScene->AttachChild(mMeshTree);
Node* meshParent = new0 Node();
mMeshTree->AttachChild(meshParent);
meshParent->AttachChild(mesh);
meshParent->LocalTransform.SetTranslate(
-mesh->GetModelBound().GetCenter());
// Subtree for sphere. This allows for a virtual trackball centered on
// the sphere.
mSphereTree = new0 Node();
mSphereTree->LocalTransform.SetTranslate(APoint(-2.0f, 0.0f, 0.0f));
mScene->AttachChild(mSphereTree);
Node* sphereParent = new0 Node();
mSphereTree->AttachChild(sphereParent);
sphereParent->AttachChild(sphere);
sphereParent->LocalTransform.SetTranslate(
-sphere->GetModelBound().GetCenter());
}
//----------------------------------------------------------------------------
void ConformalMapping::ScaleToCube (float extreme, TriMesh* mesh)
{
// Uniformly scale the cube to [-extreme,extreme]^3 for numerical
// preconditioning for the conformal mapping.
VertexBufferAccessor vba(mesh);
float minValue = vba.Position<Float3>(0)[0], maxValue = minValue;
int i, j;
for (i = 0; i < vba.GetNumVertices(); ++i)
{
Float3 position = vba.Position<Float3>(i);
for (j = 0; j < 3; ++j)
{
if (position[j] < minValue)
{
minValue = position[j];
}
else if (position[j] > maxValue)
{
maxValue = position[j];
}
}
}
float halfRange = 0.5f*(maxValue - minValue);
float mult = extreme/halfRange;
for (i = 0; i < vba.GetNumVertices(); ++i)
{
Float3& position = vba.Position<Float3>(i);
for (j = 0; j < 3; ++j)
{
position[j] = -extreme + mult*(position[j] - minValue);
}
}
mesh->UpdateModelSpace(Visual::GU_MODEL_BOUND_ONLY);
}
//----------------------------------------------------------------------------
void ConformalMapping::PseudocolorVertices (TriMesh* mesh)
{
// Color the vertices according to mean curvature.
VertexBufferAccessor vba(mesh);
const int numVertices = vba.GetNumVertices();
const int numTriangles = mesh->GetIndexBuffer()->GetNumElements()/3;
const int* indices = (int*)mesh->GetIndexBuffer()->GetData();
Vector3f* positions = new1<Vector3f>(numVertices);
int i;
for (i = 0; i < numVertices; ++i)
{
positions[i] = vba.Position<Vector3f>(i);
}
MeshCurvaturef mc(numVertices, positions, numTriangles, indices);
delete1(positions);
const float* minCurv = mc.GetMinCurvatures();
const float* maxCurv = mc.GetMaxCurvatures();
float minMeanCurvature = minCurv[0] + maxCurv[0];
float maxMeanCurvature = minMeanCurvature;
float* meanCurvatures = new1<float>(numVertices);
for (i = 0; i < numVertices; ++i)
{
meanCurvatures[i] = minCurv[i] + maxCurv[i];
if (meanCurvatures[i] < minMeanCurvature)
{
minMeanCurvature = meanCurvatures[i];
}
else if (meanCurvatures[i] > maxMeanCurvature)
{
maxMeanCurvature = meanCurvatures[i];
}
}
for (i = 0; i < numVertices; ++i)
{
Float3& color = vba.Color<Float3>(0, i);
if (meanCurvatures[i] > 0.0f)
{
color[0] = 0.5f*(1.0f + meanCurvatures[i]/maxMeanCurvature);
color[1] = color[0];
color[2] = 0.0f;
}
else if (meanCurvatures[i] < 0.0f)
{
color[0] = 0.0f;
color[1] = 0.0f;
color[2] = 0.5f*(1.0f - meanCurvatures[i]/minMeanCurvature);
}
else
{
color[0] = 0.0f;
color[1] = 0.0f;
color[2] = 0.0f;
}
}
delete1(meanCurvatures);
}
//----------------------------------------------------------------------------
TriMesh* ConformalMapping::DoMapping (TriMesh* mesh)
{
VertexBufferAccessor vba0(mesh);
const int numVertices = vba0.GetNumVertices();
IndexBuffer* ibuffer = mesh->GetIndexBuffer();
const int numTriangles = ibuffer->GetNumElements()/3;
const int* indices = (int*)ibuffer->GetData();
Vector3f* positions = new1<Vector3f>(numVertices);
int i;
for (i = 0; i < numVertices; ++i)
{
positions[i] = vba0.Position<Vector3f>(i);
}
// Color the punctured triangle red.
Float3 red(1.0f, 0.0f, 0.0f);
vba0.Color<Float3>(0, indices[0]) = red;
vba0.Color<Float3>(0, indices[1]) = red;
vba0.Color<Float3>(0, indices[2]) = red;
// Conformally map the mesh to plane, sphere, and cylinder.
ConformalMapf cm(numVertices, positions, numTriangles, indices, 0);
delete1(positions);
const Vector3f* spherePositions = cm.GetSphereCoordinates();
// Create a representation of the conformal sphere.
VertexFormat* vformat = mesh->GetVertexFormat();
int vstride = vformat->GetStride();
VertexBuffer* vbuffer = new0 VertexBuffer(numVertices, vstride);
VertexBufferAccessor vba1(vformat, vbuffer);
for (i = 0; i < numVertices; ++i)
{
vba1.Position<Vector3f>(i) = spherePositions[i];
vba1.Color<Float3>(0, i) = vba0.Color<Float3>(0, i);
}
TriMesh* sphere = new0 TriMesh(vformat, vbuffer, ibuffer);
return sphere;
}
//----------------------------------------------------------------------------
|